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1. Biased CelebA-HQ

As argued in the paper, even though hair length is not
biologically correlated to gender, the machine learning al-
gorithm could perceive it as a decisive factor for gender
discrimination and give over-credence on that attribute. To
quantitatively estimate the degree of such a bias, we present
a new attribute ‘hair length’ for CelebA-HQ dataset [7], and
constitute the Biased CelebA-HQ based on this attribute.
We design two biased datasets, the ‘extreme bias 1 (EB1)’
only with the common combinations, (female, long hair)
and (male, short hair), and ‘extreme bias 2 (EB2)’ with the
other combinations, (female, short hair) and (male, long
hair). The sample images of EB2 are exhibited in Fig. 1.
The biased CelebA-HQ is constructed as follows:

1. The annotation in the CelebA-HQ is used to split the
female and male images. After dividing the images by
gender, we manually inspected them to remove incor-
rectly labeled samples. There are a small minority of
incorrect annotations, but it could give an irresistible
effect on unbiased modeling.

2. We manually labeled all images with hair length to
{short(0), long(1)}. Images with intermediate length
of hair were excluded (See examples in Fig. 2A).

3. For all the images, we take off exceptional cases that
are tricky to be categorized (See Fig. 2B,C,D,E).

4. As a result, we got 15,441 images for (female, long),
8,986 for (male, short), 309 for (female, short), and
565 images for (male, long). In total, we have 25,301
images in the dataset.

5. We union (female, long hair) and (male, short hair) im-
ages to the first set, namely ‘extreme bias 1 (EB1)’.
The rests, (female, short hair) and (male, long hair),
create the other set, ‘extreme bias 2 (EB2)’. Then, we
sample 1,000 images for each pair from EB1 and name
it val-EB1, leaving the remainders as train-EB1.

6. We realize that the number of EB2 images is insuffi-
cient, so supplement them from CelebA dataset [8]. As
a result, 3,191 (female, short hair) samples and 1,335
(male, long hair) samples are additionally included.
We manually removed duplicate images in EB2, since
the CelebA-HQ is the subset of the CelebA.

7. Among these EB2 images, we select 1,000 images for
each pair for testing and 0.5% of each male and fe-
male for EB1 are sampled to make the ‘utmost bias 1
(UB1)’. During sampling, we give priority to the im-
ages from CelebA-HQ, then consider CelebA images.
In consequence, 72 (female, short hair) images and 38
(male, long hair) images are added to train-EB1 result-
ing in UB1.

The resulting number of images in training and test
dataset is summarized in Tab. 1. Although most of EB2 im-
ages from CelebA are not utilized for this experiment, we
provide all the annotations to contribute to future research.

EB1 EB2
Gender female male female male
Hair long short short long

train 14,441 7,986 72 38
val 1,000 1,000 1,000 1,000

Table 1. Train and validation set of the Biased CelebA-HQ.

2. Exploration on the Data Distribution
In this section, we exhibit the details of the training-

validation data distribution for CelebA-HQ and UTK-
Face [11].

CelebA-HQ. The UB1, which is used for training, con-
tains all 4 combinations in the training set, in total 22,537
images. The val-EB1 consists of 1,000 images for each
common combination, (female, long hair) and (male, short
hair) from the validation partition, while the val-EB2 con-
sists of 1,000 images from the other combinations, (female,

1



Figure 1. Examples of Extreme bias 2 (EB2) dataset. The image samples of the (female, short hair) and (male, long hair) pair. The EB1
image samples are shown in the main text.

Figure 2. Exceptional cases. The images above were excluded from our experiments for the following reasons. A: hair with intermediate
length. B: hair is obscured by something such as a hat. C: the gender is cannot be recognized. D: the hair is guessed to be long, but it is
not clearly shown. E: the hair is covered by the image boundary.

short hair) and (male, long hair), thus each set consists of
2,000 images in total. Figure 3 shows the overall data dis-
tribution of the Biased CelebA-HQ.

UTKFace. Between ‘age’, ‘gender’, and ‘skin tone’ an-
notations provided in UTKFace, age is not used since the
annotation pairs for age ({age, gender}, {age, skin tone})
are imbalanced. In Fig. 4, the first graph shows (female,
old) images are much fewer than (female, young) ones, and
the second graph shows (dark skin, old) images are much
fewer than (bright skin, young). This skewed distribution
is not appropriate for unbiased modeling experiment. If we
predict age with gender bias and α is 0.2, for example, the
number of (female, young) images is similar to that of (fe-
male, old) and hence the dataset becomes unbiased (See the
first graph in Fig. 4). Thus, only with the {gender, skin

tone} labels, we perform 1) skin tone prediction with gen-
der bias and 2) gender prediction with skin tone bias.

For the skin tone prediction with gender bias, we split
the images into extremely biased sets. Then, we add EB2
image samples (with up to α = 0.2) to train-EB1, and
name it UB1. UB2 is created in a similar manner. The
unbiased test set, composed of 300 images for each pair
of {gender, skin tone}, thereby 1,200 images in total. The
gender prediction with skin tone bias scenario is performed
in the same way. Fig. 5 shows the overall data distribution
of UB1, UB2, and the unbiased test sets.

3. Training Details
In this section, we report training details that are not

specified in the paper. The details for each dataset are as



Figure 3. The overall data distribution of biased CelebA-HQ.

Figure 4. The data distribution of each annotation pair for UTKFace.

Figure 5. The overall data distribution of UTKFace.

follows:

In all the experiments, We set L = 3 for AlexNet and
L = 5 for VGG11, ResNet18. In addition, we set W =
H = 7, C = 64 for gl.

CelebA-HQ. The input images are resized to (224, 224)

and scaled to 0 − 1. To train the base model that acts as
the feature extractor in our method, ImageNet-pretrained
weights are utilized for initialization. During training, we
set the batch size as 32 and use the Adam optimizer [5]
with weight decay (0.0005), β1 (0.9), β2 (0.999), and eps



(10−8). The AMSGrad variant of the model is not used
in our optimizing procedure. We train our model for 20
epochs, the first 10 epochs with learning rate 10−4, then
with 10−5 for the last 10 epochs. We set λ of orthogonal
loss as 10.

UBnet is initialized with Xavier [2]. The input image
and the other experimental settings for training UBnet are
exactly the same as the base model.

UTKFace. The input images are resized to (224,
224) and standardized. The base model is initialized by
ImageNet-pretrained weights. We use the batch size 512
and train the model for 20 epochs by AdamP optimizer [4]
with weight decay (0.0005), β1 (0.9), β2 (0.999), and eps
(10−8). The learning rate is initially set to 10−3 and is de-
cayed by factor 0.1 for every 10 epochs. We set λ of orthog-
onal loss as 1.

UBnet is initialized with Xavier. All the other setups for
UBnet are the same as that of the base model.

ImageNet. The input images are resized to (224, 224)
and standardized. To train the base model, the weights are
initialized with Xavier. The learning rate is initially set to
10−4 and is decayed by cosine annealing to be 0 at the max-
imum epochs of 120. We use the batch size 512 and train
UBnet for 120 epochs via Adam optimizer with weight de-
cay (0.0005), β1 (0.9), β2 (0.999), and eps (10−8). We set
λ of orthogonal loss as 10.

The input image and the experimental settings for train-
ing UBnet are exactly the same as base model.

4. Evaluations on other Base Models

The contribution of the base model depends on the ex-
periment settings such as task, dataset, and applied sub-
components. Therefore, most works search for the most
appropriate one according to their modeling purpose. The
base models for HEX [10] and Rebias [1] are AlexNet [6]
and ResNet18 [3], respectively. Although the results with
VGG11 [9] are reported in the paper, we evaluate the perfor-
mance of our UBnet on AlexNet and ResNet18 to estimate
if the proposed method generalizes better than competing
models on the same base model condition. From the exper-
iments in Tab. 2, UBnet(alex) and UBnet(res) outperform
HEX and Rebias, respectively.

4.1. Ablation Study on Model Size.

We explore the effect of the model size in terms of the
number of parameters. As seen in Tab. 3, our model sig-
nificantly outperforms the base models even with a smaller
number of parameters (in the case of VGG16) on EB2 and
test set. This result shows that the increased model size (by
0.2%) is not the main factor of the improved performance.

Method Acc(EB1) Acc(EB2) Acc(Test)

Base model 99.38(±0.31) 51.22(±1.73) 75.30(±0.93)
HEX 92.50(±0.67) 50.85(±0.37) 71.68(±0.50)
Rebias 99.05(±0.13) 55.57(±1.43) 77.31(±0.71)

UBnet(alex) 99.40(±0.26) 51.60(±0.36) 75.50(±0.26)
UBnet(res) 99.57(±0.12) 57.48(±2.23) 78.53(±1.16)
UBnet(vgg) 99.18(±0.18) 58.22(±0.64) 78.70(±0.24)

Table 2. Results on CelebA-HQ. Acc(EB1), Acc(EB2) and
Acc(test) denote accuracy on val-EB1, val-EB2, and Test sets re-
spectively for the model trained on UB1.

Method VGG11 VGG13 VGG16 UBnet
Params 128,774K 128,959K 134,268K 129,045K

Acc(EB1) 99.38 99.58 99.42 99.18
Acc(EB2) 51.22 52.45 54.50 58.22
Acc(test) 75.30 76.02 76.96 78.70

Table 3. Ablation Study on Model Size. The proposed method
shows the best performance on Acc(EB2) and Acc(test).
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