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This supplementary material provides more qualitative

results, details of the network architecture, and some failure

cases that could not be included in the main paper due to the

limit of space. Especially, we provide a video that shows the

visual consistency and the advantages of our scene painting

framework. We also provide the code, data, and instructions

needed to reproduce the experimental results.

A. Qualitative Results

A.1. Video

The supplementary video presents a comparison be-

tween OASIS [5] and our method. The results of OASIS

in the video are generated by applying OASIS to seman-

tic label maps in a frame-wise manner. The results of OA-

SIS show temporal inconsistency, and distorted structures as

it does not consider underlying 3D structures. Our results

show consistent and geometrically accurately synthesized

frames.

A.2. Scene Style Manipulation

As mentioned in the main paper, our approach readily

controls the style of a scene by changing the style vector z.

We can change the style in the test time, so it does not re-

quire the re-training of the network. In Figure 1, Figure 2,

and Figure 3, we show examples of scene style manipula-

tion of a living room, an office, and a kitchen scene.

We also compare the colored scene using output images

from our scene painting network with a colored scene using

pseudo images from OASIS [5]. In Figure 3, the colored

scenes using pseudo images show messy textures.

A.3. Scene Editing

In Figure 4, Figure 5, and Figure 6, we present an appli-

cation of our approach to scene editing. Note that our ap-

proach assigns texture colors for each mesh in a 3D scene,

and it is just the same with the ordinal 3D scene editing case

for the manipulation. Compared with neural rendering tech-

niques, this feature allows users to modify scene color and

configuration more easily. The example images were ren-

dered from the edited scene with textured meshes generated

by our method.

B. Network Architecture

In Table 1 in the main paper, we compare the perfor-

mances of different network architectures for the scene

painting network: a MLP and a MLP+CNN. In this section,

we present their detailed architectures.

In Figure 7, we show the network architecture of the

MLP. From a given 3D scene with semantically labeled

objects, we render a 2D semantic label map and a 3D

world coordinate map, which is normalized into [−1, 1].
We compute the positional encoding from the coordinate

map. Then, we concatenate the positional encoded coordi-

nate map and the label map to generate an input feature

map for the generator. A style vector is a 64-dimensional

vector sampled from the standard normal distribution. We

feed the 64-dimensional style vector into the style map-

ping network W as done in StyleGANv2 [2] and get a 256-

dimensional transformed style vector. The MLP generator

is implemented with 1× 1 convolution layers as it is equiv-

alent to applying fully connected layers to each pixel inde-

pendently. ModConv1x1 is a 1 × 1 convolution layer with

weight modulation using a 256-dimensional transformed

style vector such as StyleGANv2 [2]. We use the leaky

ReLU [3] activation function. We use seven ModConv1x1

layers. Conv1x1 is a vanilla 1 × 1 convolution layer. Af-

ter the last convolution layer, we use a hyperbolic tangent

function to generate an RGB image.

Previous methods based on implicit representations [1,4]

adopt CNNs to improve their performance. In this study, we

also examine whether adopting a CNN can improve the gen-

eration quality of our framework. In Figure 8, we show the

network architecture of the MLP+CNN. We add a Conv3x3

block to the MLP architecture, which consist of Conv3x3

ResBlocks and Affine layers. A ConvNxN ResBlock con-

sists of two conv layers and a Leaky ReLU layer with a

skip conneciton. An Affine layer computes Affine parame-
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Figure 1. Living room scene examples of style manipulation using our scene painting network.

Figure 2. Office scene examples of style manipulation using our scene painting network.

Figure 3. Kitchen scene examples of style manipulation using our scene painting network. The first row shows colored scenes using

generated images from our scene painting network. The second row shows colored scenes using pseudo images from OASIS [5].

ters from a transformed style vector, and applies the param-

eters to an input feature map.

C. Failure Cases

Our scene painting network generates a color value of a

3D coordinate on a mesh surface. This approach introduces

a few limitations. First, our method cannot handle transpar-



Figure 4. Scene editing example of a bedroom scene. We paint the scene using our scene painting network. We add some cups, some

pillows, and change the color of the floor and the table.

Figure 5. Scene editing example of a living room scene. We paint the scene using our scene painting network. We add some stools and a

chair, and resize a stool.

Figure 6. Scene editing example of a office scene. We paint the scene using our scene painting network. We add some chairs, replace the

chairs, put some bottles, and change the color of the wall.
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Figure 7. A flowchart of the MLP architecture. The inputs are a coordinate map, a label map, and a style vector. The number above each

box shows the number of output channels. Concat means concatenation of the input tensors along the channel dimension. ModConv1x1 is

a 1× 1 convolution layer with weight modulation using the 256-dimensional transformed style vector such as StyleGANv2 [2]. LReLU is

a leaky ReLU function [3]. Conv1x1 is a vanilla 1× 1 convolution layer. Tanh is a hyperbolic tangent function. The output is a generated

RGB image.
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Figure 8. A flowchart of the MLP+CNN architecture. We add a Conv3x3 Block to the MLP architecture. The inputs are a coordinate map,

a label map, and a style vector. The number above each box shows the number of output channels. Concat means concatenation of the

input tensors along the channel dimension. ModConv1x1 is a 1 × 1 convolution layer with weight modulation using the 256-dimensional

transformed style vector such as StyleGANv2 [2]. LReLU is a leaky ReLU function [3]. Conv1x1 is a vanilla 1×1 convolution layer. Tanh

is a hyperbolic tangent function. The output is a generated RGB image.

Figure 9. Failure case of transparent objects. The first row shows our results and the second row shows pseudo images from OASIS [5].

The images in the same row have different camera viewpoints.

ent objects such as windows but handles them as opaque

objects, as shown in Figure 9. Second, our method cannot

effectively handle view-dependent lighting effects such as

specular lighting and reflection, as shown by the bed and the



Figure 10. Failure case of lighting. The first row shows our results and the second row shows pseudo images from OASIS [5]. The images

in the same row have different camera viewpoints.

Figure 11. Failure case of blurred drawers. The first row shows our results and the second row shows pseudo images from OASIS [5]. The

images in the same row have different camera viewpoints.

floor in Figure 10. Finally, our method aggregates pseudo

images independently synthesized by a 2D semantic image

synthesis method, and this may introduce blurry artifacts. In

Figure 11 and Figure 12, while the drawers and paintings in

the pseudo images synthesized by OASIS [5] have complex

textures, the drawers and paintings in our results look blurry

without textures.

D. Number of training frames

Table 1 show the effect of different numbers of training

frames on the image quality. Fewer training frames indicate

a smaller amount of supervision for each 3D coordinate.

Table 1. The quantitative evaluation.

Method # of frames Time mIoU (↑) FID (↓)

Generated 50 2h 0.179 194.158

Generated 100 4h 0.195 185.081

Generated 400 18h 0.219 162.211

Generated 800 30h 0.241 151.401

Averaging 800 36m 0.214 180.436

Some unobserved regions may not have supervision. This

leads to quality degradation (1−4th rows of Table 1).



Figure 12. Failure case of blurred paintings. The first row shows our results and the second row shows pseudo images from OASIS [5]. The

images in the same row have different camera viewpoints.
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