
Multi-Scale Memory-Based Video Deblurring: Supplementary Material

Bo Ji Angela Yao
National University of Singapore
{jibo,ayao}@comp.nus.edu.sg

1. Loss
We borrow the multi-scale content loss [4] to train our

model, but replace the mean-square error with Charbonnier
loss [1]:

L =
1

S ·N

S∑
s=1

N∑
i=0

1

Ms
ρ(Rs

i − Y s
i ), (1)

where ρ(x) =
√
x2 + ϵ2, ϵ= 10−3, Rs

i and Y s
i denote the

output and the ground-truth sharp frame at scale level s re-
spectively, S and N denote the number of scales and train-
ing sequence and Ms is the number of pixels in the frame
at scale level s.

2. Architecture
We provide the detailed architecture for each module in

our proposal. The input image is of shape H ×W × 3.

Downsampling module. The downsampling module D
consists of one initial convolutional layer, residual dense
blocks [8] and two strided convolution. Table 1 shows the
architecture of D.

Feature extraction module. Table 2 shows the architec-
ture of the feature extraction module F . The module starts
with the initial convolutional layer and then feeds the fea-
tures into multiple residual blocks [3]. To save the compu-
tational cost, we use 30 and 10 blocks for the forward and
backward modules, respectively.

In the multi-scale design, F has different input channels
at three scales, but the first convolutional layer maps the
features into the same output channel. Since we start from
the scale level s= 3, the input does not have access to the
features from the previous scale and the input channel is
fewer than those at higher scale levels.

Upsampling module. The upsampling module U con-
tains two transposed convolution and one 5 × 4 convolu-
tional layer. Each transposed convolution upscales the fea-

ture by a scale factor of 2. The architecture is presented in
Table 3.

Key encoder. The key encoder K contains two convolu-
tional layer, two residual blocks, and the first stage of the
ResNet50 [2]. In Table 4, the Conv2, Pooling and Stage1
rows represent the first stage of a pre-trained ResNet50. The
output of ResNet50 is projected into the key space via a con-
volutional layer, where the dimension is reduced from 256
to 64 to save the computational budget for the matching.

Value encoder. The value encoder module V is similar to
the key encoder K. One difference is that the initial out-
put channel is set to 32 rather than 48. The other difference
is that we do not project the encoded value to another di-
mension as we do not calculate attention using the values.
Table 5 shows the value encoder structure.

Decoder. Table 6 illustrates the architecture of the de-
coder G. The pixel shuffle layer [6] upscales the features
by a scale factor of 4.

3. Experimental Results

In this section, we provide additional experimental re-
sults. In Fig. 1, we provide the visual samples for the entire
6 consecutive frames to show the effectiveness of our model
on handling large motion. We provide more visual compar-
isons from Fig. 2 to 5. For the video samples, please refer
to the provided mp4 files.

In Fig. 6, we also show some examples in which our
method fails to generate sharp results. The patterns in the
region denoted by the red boxes are very similar, which
leads to the inaccurate matching performance of the similar-
ity matching. This problem exists not only for our method,
but also for other alignment methods such as optical flow,
as it causes some misalignment between various blurry ob-
jects.

1



Layer Output Downsampling Module
Conv1 H × W × 3 5 × 5, stride 1
RDB1 H × W × 3 [3 × 3, 16, dense conv] × 3
Conv2 H/2 × W/2 × 12 5 × 5, stride 2
RDB2 H/2 × W/2 × 12 [3 × 3, 24, dense conv] × 3
Conv3 H/4 × W/4 × 48 5 × 5, stride 2

Table 1. Downsampling module D architecture.

Layer Output Forward Module Backward Module
Conv1 H/4 × W/4 × 64 3 × 3, stride 1

ResBlock1 H/4 × W/4 × 64

[
3 × 3, 64
3 × 3, 64

]
× 30

[
3 × 3, 64
3 × 3, 64

]
× 10

Table 2. Feature extraction module F architecture.

Layer Output Upsampling Module
Transposed conv1 H/2 × W/2 × 32 3 × 3, stride 2
Transposed conv2 H × W × 16 3 × 3, stride 2

Conv1 H × W × 3 5 × 5, stride 1

Table 3. Upsampling module U architecture.

Layer Output Key Encoder
Conv1 H/4 × W/4 × 48 3 × 3, stride 1

ResBlock1 H/4 × W/4 × 48

[
3 × 3, 48
3 × 3, 48

]
× 2

Conv2 H/8 × W/8 × 64 7 × 7, stride 2
Pooling H/16 × W/16 × 64 3 × 3, max pool, stride 2

Stage1 H/16 × W/16 × 256

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

Conv3 H/16 × W/16 × 64 3 × 3, stride 1

Table 4. Key encoder module K architecture.

Layer Output Value Encoder
Conv1 H/4 × W/4 × 32 3 × 3, stride 1

ResBlock1 H/4 × W/4 × 32

[
3 × 3, 32
3 × 3, 32

]
× 2

Conv2 H/8 × W/8 × 64 7 × 7, stride 2
Pooling H/16 × W/16 × 64 3 × 3, max pool, stride 2

Stage1 H/16 × W/16 × 256

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

Table 5. Value encoder module V architecture.

Layer Output Decoder
Conv1 H/16 × W/16 × 64 3 × 3, stride 1

ResBlock1 H/16 × W/16 × 64

[
3 × 3, 64
3 × 3, 64

]
× 2

PixelShuffle H/4 × W/4 × 64 3 × 3, stride 1

Table 6. Decoder module G architecture.

References

[1] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and
Michel Barlaud. Two deterministic half-quadratic regular-
ization algorithms for computed imaging. In Proceedings of
1st International Conference on Image Processing, volume 2,
pages 168–172. IEEE, 1994. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-

nition, pages 770–778, 2016. 1
[3] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 1

[4] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3883–3891, 2017.



(a) Input

(b) DBN [7]

(c) CDVD-TSP [5]

(d) Ours

(e) Ground-truth

Figure 1. Qualitative comparisons on the extremely difficult frames of the original GOPRO dataset [4]. We present the entire 6 consecutive
frames for comparison. For these 6 images, only our results can be seen to have roughly 5 characters.

1, 3, 4, 5, 6, 7
[5] Jinshan Pan, Haoran Bai, and Jinhui Tang. Cascaded deep

video deblurring using temporal sharpness prior. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3043–3051, 2020. 3, 4, 5, 6, 7

[6] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution us-
ing an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 1

[7] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo

Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1279–1288, 2017. 3, 4, 5, 6, 7

[8] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun
Fu. Residual dense network for image super-resolution. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2472–2481, 2018. 1

[9] Zhihang Zhong, Ye Gao, Yinqiang Zheng, and Bo Zheng. Ef-
ficient spatio-temporal recurrent neural network for video de-
blurring. In European Conference on Computer Vision, pages
191–207. Springer, 2020. 4, 5, 6, 7



(a) Input (b) DBN [7]

(c) ESTRNN [9] (d) CDVD-TSP [5]

(e) Ours (f) Ground-truth

Figure 2. Qualitative comparisons on the original GOPRO dataset [4]. The white characters ‘RA’, the yellow marker and the characters
‘BA’ on the black board are slightly visible with our method.



(a) Input (b) DBN [7]

(c) ESTRNN [9] (d) CDVD-TSP [5]

(e) Ours (f) Ground-truth

Figure 3. Qualitative comparisons on the original GOPRO dataset [4]. Our method is able to handle very detailed areas, such as tree
branches.



(a) Input (b) DBN [7]

(c) ESTRNN [9] (d) CDVD-TSP [5]

(e) Ours (f) Ground-truth

Figure 4. Qualitative comparisons on the original GOPRO dataset [4]. Our method does not mix the characters together when restoring a
text sequence, such as the number “182” in the figure. In our method, there is a spacing between the number “2” and the number “8”. In
other methods, the three numbers are stuck together.



(a) Input (b) DBN [7]

(c) ESTRNN [9] (d) CDVD-TSP [5]

(e) Ours (f) Ground-truth

Figure 5. Qualitative comparisons on the original GOPRO dataset [4]. Our method does not have a dragging effect when dealing with large
motion, e.g. the front and back part of the car in white.



(a) Input (b) Ours (c) Ground-truth

(d) Input (e) Ours (f) Ground-truth

Figure 6. Hard samples. The zoomed in regions do not have sharp edges and details due to the limitation of the similarity matching.


	. Loss
	. Architecture
	. Experimental Results

