
XYDeblur: Divide and Conquer for Single Image Deblurring
-Supplementary Material-

In this supplementary material, we provide detailed explanations for the experimental settings and additional results on
the GoPro [3], RealBlur [4] and REDS [2] datasets.

1. Implementation details
XYDeblur. For reproducing the proposed method, we uploaded the source code of XYDeblur with sample data.1

To test XYDeblur, run the command below:

• python main.py –mode ”test”

Resultant data including result image, r̂1, and r̂2 will be saved in the following directory:

• results/XYDeblur/eval

For r̂1 and r̂2, two types of files will be stored (∗.png and ∗.mat). The first ∗.png file contains the normalized data in the
range of [0,255]. The second ∗.mat file contains the original tensor data.

To train XYDeblur, run the command below:

• python main.py –mode ”train”

During the training process, the training log and intermediate weights will be stored in the following directories:

• runs/XYDeblur

• results/XYDeblur/weights

Since we only provide a sample training dataset, whole blur and sharp images should be copied to the following directories
to further train the network with entire training dataset:

• sample data/train/blur

• sample data/train/sharp

1https://drive.google.com/file/d/1yVmxIqUXHicr62PQu83QvNy90z3I_mPq/view?usp=sharing

1

https://drive.google.com/file/d/1yVmxIqUXHicr62PQu83QvNy90z3I_mPq/view?usp=sharing


Applying the proposed method to the top-performing networks. Detailed descriptions for the networks [1, 3, 5] and
their variants used in the experiment are listed in Tab 1. All three networks adopt a multi-stage approach, and each network
architecture listed in Tab 1 describes a single stage network. The rest stages are constructed in a similar manner. Unlike the
other two methods, the architecture of MSCNN cannot be clearly divided into encoder and decoder. Therefore, the left half
and the right half of the architecture are considered as encoder and decoder, respectively.

Table 1. Detailed architecture of the baseline networks and their variants.

PSS-NSC [1] and its variants
PSS-NSC & PSS-NSCOurs PSS-NSCChannel↑ PSS-NSCLayer↑

Operation Cin
∗ Cout

† S‡ Operation Cin Cout S Operation Cin Cout S

E

Conv×1 6 32 - Conv×1 6 32 - Conv×1 6 32 -
ResBlock×8 32 32 - ResBlock×8 32 32 - ResBlock×8 32 32 -

Conv×1 32 64 0.5 Conv×1 32 64 0.5 Conv×1 32 64 0.5
ResBlock×8 64 64 - ResBlock×8 64 64 - ResBlock×8 64 64 -

Conv×1 64 128 0.5 Conv×1 64 128 0.5 Conv×1 64 128 0.5
ResBlock×8 128 128 - ResBlock×8 128 128 - ResBlock×8 128 128 -

Conv×1 128 256 -

D

ResBlock×8 128 128 - ResBlock×8 256 256 - ResBlock×16 128 128 -
Deconv×1 128 64 2 Deconv×1 256 128 2 Deconv×1 128 64 2

ResBlock×8 64 64 - ResBlock×8 128 128 - ResBlock×16 64 64 -
Deconv×1 64 32 2 Deconv×1 128 64 2 Deconv×1 64 32 2

ResBlock×8 32 32 - ResBlock×8 64 64 - ResBlock×16 32 32 -
Conv×1 32 3 - Conv×1 64 3 - Conv×1 32 3 -

DMPHN [5] and its variants
DMPHN & DMPHNOurs DMPHNChannel↑ DMPHNLayer↑

Operation Cin Cout S Operation Cin Cout S Operation Cin Cout S

E

Conv×1 3 32 - Conv×1 3 32 - Conv×1 3 32 -
ResBlock×2 32 32 - ResBlock×2 32 32 - ResBlock×2 32 32 -

Conv×1 32 64 0.5 Conv×1 32 64 0.5 Conv×1 32 64 0.5
ResBlock×2 64 64 - ResBlock×2 64 64 - ResBlock×2 64 64 -

Conv×1 64 128 0.5 Conv×1 64 128 0.5 Conv×1 64 128 0.5
ResBlock×2 128 128 - ResBlock×2 128 128 - ResBlock×2 128 128 -

Conv×1 128 256 -

D

ResBlock×2 128 128 - ResBlock×2 256 256 - ResBlock×4 128 128 -
Deconv×1 128 64 2 Deconv×1 256 128 2 Deconv×1 128 64 2

ResBlock×2 64 64 - ResBlock×2 128 128 - ResBlock×4 64 64 -
Deconv×1 64 32 2 Deconv×1 128 64 2 Deconv×1 64 32 2

ResBlock×2 32 32 - ResBlock×2 64 64 - ResBlock×4 32 32 -
Conv×1 32 3 - Conv×1 64 3 - Conv×1 32 3 -

MSCNN [3] and its variants
MSCNN & MSCNNOurs MSCNNChannel↑ MSCNNLayer↑

Operation Cin Cout S Operation Cin Cout S Operation Cin Cout S

E Conv×1 6 64 - Conv×1 6 64 - Conv×1 6 64 -
ResBlock×10 64 64 - ResBlock×10 64 64 - ResBlock×10 64 64 -

Conv×1 64 128 -

D ResBlock×9 64 64 - ResBlock×9 128 128 - ResBlock×18 64 64 -
Conv×1 64 3 - Conv×1 128 3 - Conv×1 64 3 -

∗ The input channel dimension of the feature map.
† The output channel dimension of the feature map.
‡ Scaling factor for the resolution of the feature map.



2. Additional validation for separated decoders
We tested XYDeblur using a blurred Checkerboard image shown in Fig. 1 (a), which contains equally distributed signals

along both horizontal and vertical axes. The sub-solution estimated by the first decoder (r̂1) is shown in Fig. 1 (b), and its
1D representation on the two cross-sections parallel to the x- and y- axis are plotted in Fig. 1 (d). As seen in Fig. 1 (d),
r̂1 contains high level of x-axis frequency component (yellow colored signal) and low level of y-axis frequency component
(blue colored signal). In terms of the signal power, the 1D signal in x-axis has the signal power of 289.37 and the 1D signal
in y-axis has the signal power of 0.81. On the contrary, the sub-solution from the second decoder (r̂2) contains the x-axis
signal of power 0.51 and the y-axis signal of power 353.31 as shown in Figs. 1 (c) and (e).

(a)

(b) (c)

(d) (e)

Figure 1. Input Checkerboard image and sub-solutions of Y-Net: (a) Blurred Checkerboard image; (b) r̂1 plotted in 3D-space with two
slice planes; (c) r̂2 plotted in 3D-space with two slice planes; (d) 1D representation of sliced planes along the x-axis (yellow) and the y-axis
(blue) for r̂1; (e) 1D representation of sliced planes along the x-axis (yellow) and the y-axis (blue) for r̂2.



3. Training of the three network variations in Table
We extended the training epochs of the three network variations in Table 2 from the main manuscript. Table 2 shows

the performance obtained after 1,800, 1,600, and 1,300 epochs for PSS-NSC, DMPHN, and MSCNN, respectively. Note
that all three network variations were sufficiently trained and found to have converged after approximately 1,800, 1,600, and
1,300 epochs, respectively, and further training of Channel↑ and Layer↑ did not show any noticeable differences. All the
variations showed consistent improvements over Baseline. Ours still outperforms the other two variations by a large margin
for MSCNN and shows comparable performance for PSS-NSC and DMPHN at the expense of approximately 60 % (w.r.t.
Channel↑) and 30 % (w.r.t. Layer↑) fewer network parameters.

Table 2. Performance evaluation on GoPro with further training

Method Variations PSNR(training epoch)

PSS-NSC

Baseline 30.94(1,100)
Channel↑ 31.06(1,100) 31.31(1,800)

Layer↑ 31.18(1,100) 31.53(1,800)
Ours 31.27(1,100) 31.55(1,800)

DMPHN

Baseline 30.28(1,000)
Channel↑ 30.23(1,000) 30.67(1,600)

Layer↑ 30.48(1,000) 30.98(1,600)
Ours 30.63(1,000) 30.97(1,600)

MSCNN

Baseline 29.22(600)
Channel↑ 29.34(600) 29.92(1,300)

Layer↑ 28.97(600) 29.90(1,300)
Ours 29.98(600) 30.63(1,300)

4. More results on the prevention of color shift artifacts
As described in the main manuscript, spatial kernel rotation for parameter sharing between the two decoders prevents

undesired division of complementary features and also improves the efficiency of the network. In this section, we provide
more results on the GoPro and RealBlur test datasets. Figs. 2- 5 shows the input, GT, and resultant images of U-Net2D and
the proposed XYDeblur. It can be clearly seen that the two decoders of U-Net2D unnecessarily decrease or increase the color
temperature of the resultant images. On the contrary, the two decoders of the proposed XYDeblur suppress estimation of
undesired complementary sub-solutions, resulting images with the balanced color temperature.



Figure 2. Experimental data of U-Net2D and XYDeblur from the GoPro test dataset to demonstrate the color shift artifact.



Figure 3. Experimental data of U-Net2D and XYDeblur from the GoPro test dataset to demonstrate the color shift artifact.



Figure 4. Experimental data of U-Net2D and XYDeblur from the RealBlur test dataset to demonstrate the color shift artifact.



Figure 5. Experimental data of U-Net2D and XYDeblur from the RealBlur test dataset to demonstrate the color shift artifact.



5. Resultant images of the state-of-the-art networks and their variations
In Section 4.3 of the main manuscript, we performed an experiment to validate the applicability and extensibility of

XYDeblur. In this section, we visualize the resultant images of the RealBlur test dataset in Figs. 6 & 7. In these figures, the
second rows show the resultant images obtained by the baseline network, i.e., MSCNN, DMPHN, and PSS-NSC. The third
rows represent the results of the NetworkOurs, and the last two rows are the residual images generated by the two decoders of
NetworkOurs. These figures show that NetworkOurs produce better deblurred results than the baseline networks.

To further verify that the property of X-Y separation is not acquired by choice of one specific training dataset, we trained
PSS-NSC with the proposed approach on the REDS dataset. The resultant images of the REDS dataset can be found in Fig. 8,
where the trained model exhibits a clear separation of X-Y components. Also, this validation shows a similar trend to the
results of the model trained on the GoPro dataset.



Figure 6. Experimental results for MSCNN, DMPHN, PSS-NSC with and without the proposed approach from the RealBlur dataset.



Figure 7. Experimental results for MSCNN, DMPHN, PSS-NSC with and without the proposed approach from the RealBlur dataset.



Figure 8. Experimental results for PSS-NSC with the proposed approach from the REDS dataset.



References
[1] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dynamic scene deblurring with parameter selective sharing and nested skip

connections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3848–3856, 2019. 2
[2] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee. Ntire 2019

challenge on video deblurring and super-resolution: Dataset and study. In CVPR Workshops, June 2019. 1
[3] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network for dynamic scene deblurring. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3883–3891, 2017. 1, 2
[4] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho. Real-world blur dataset for learning and benchmarking deblurring

algorithms. In Proceedings of the European Conference on Computer Vision, pages 184–201, 2020. 1
[5] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Koniusz. Deep stacked hierarchical multi-patch network for image deblurring.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5978–5986, 2019. 2


	. Implementation details
	. Additional validation for separated decoders
	. Training of the three network variations in Table
	. More results on the prevention of color shift artifacts
	. Resultant images of the state-of-the-art networks and their variations

