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In the manuscript, we report extensive experimental re-

sults on three benchmark databases. In this supplementary

material, more additional studies are provided as follows:

• We present the architecture of the strategy network

(see Sec. 1).

• We present the proof of theorem 1 (see Sec. 2).

• We introduce the details of these databases (see

Sec. 3).

• We introduce the detailed settings for the proposed

LAT-AT (see Sec. 4).

• We introduce the training and evaluation settings for

the comparison methods (see Sec. 5).

• We present comparisons with AWP trained with

more iterations and a larger perturbation strength (see

Sec. 6).

• We study how the maximal perturbation strength, the

number of iteration, and the step size affect the robust-

ness and the clean accuracy of the target network in

adversarial training. We use PGD-AT [6] as an illus-

tration (see Sec. 7).

• We present the selection of the two trade-off hyper-

parameters (i.e., α and β) in the objective function (see

Sec. 8).

*The first two authors contribute equally to this work. † Work done

during an internship at Tencent AI Lab. ‡ Correspondence to: Baoyuan Wu

(wubaoyuan@cuhk.edu.cn) and Xiaochun Cao (caoxiaochun@iie.ac.cn).

• We illustrate the evolution of the generated perturba-

tion strength of several images during the training pro-

cess (see Sec. 9).

• We conduct experiments on more image databases (see

Sec. 10).

• We introduce the selection of the strategy â (see

Sec. 11).

• We discuss the training efficiency of the proposed

method (see Sec. 12).

1. Architecture of the Strategy Network
The architecture of the strategy network is illustrated in

Fig. 1. We exploit ResNet18 [3] as the backbone. Given an

image, the strategy network outputs an attack strategy, i.e.,
the configuration of how to perform the adversarial attack.

Specifically, the strategy network outputs a set of attack pa-

rameters for AE generation.

2. Proof of Theorem 1
First we introduce some notations. Let L0 : X × Y ×

W×Θ → R
+ be the objective function in (7) of submission

(Line 400) as

L0 = L1 + αL2 + βL3. (1)

We define x∗
adv(x,w) as the optimal adversarial example

generated by the strategy network

x∗
adv(x,w) = argmax

θ
g(x,a(θ),w)

= argmax
θ

Ea∼p(a|x,θ)[L0],
(2)
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Figure 1. The overview of the strategy network. The outputs are a

set of attack parameters for generating adversarial examples. Each

attack parameter is encoded by a one-hot vector.

and x̂adv(x,w) is a δ-approximate solution to x∗
adv(x,w).

In addition, the full gradient of L0 w.r.t w is

∇wL0(w) =
1

N

N∑
i=n

∇wLn
0

=
1

N

N∑
n=1

∇wL0(x
∗
adv(xn,w),w),

(3)

where x∗
adv(xn) is the optimal adversarial example for xn.

The stochastic gradient of L0 w.r.t w is

∇w�(w) =
1

|B|
|B|∑
i=1

∇wLi
0

=
1

|B|
N∑

n=1

∇wL0(x
∗
adv(xi,w),w).

(4)

Then ∇θL0 and ∇θ� correspond to the full and stochastic

gradients of L0 w.r.t θ. Without lose of generality, we as-

sume that

E[∇w�(w)] = ∇wL0(w). (5)

We note the approximate stochastic gradient as ∇w �̂:

∇w �̂ (w) =
1

|B|
|B|∑
i=1

∇wL̂i
0

=
1

|B|
N∑

n=1

∇wL0(x̂adv(xi,w),w).

(6)

Moreover, the adversarial example xadv(x,w) can be iden-

tified by a parameter θ of the strategy network and the gra-

dients like (3), (4), (6) would be

∇wL0(θ,w) := ∇wL0(w)

∇w�(θ,w) := ∇w�(w)

∇w �̂(θ,w) := ∇w �̂ (w).

(7)

The corresponding gradients w.r.t θ will be ∇θL0, ∇θ� and

∇θ �̂. As the L0 in (7) of submission (Line 400) satisfies the

Lipschitz gradient conditions, given xn ∈ X , it holds that

sup
θ

‖∇wLn
0 (θ,w)−∇wLn

0 (θ,w
′)‖2

≤ Lww‖w −w′‖2
sup
w

‖∇wLn
0 (θ,w)−∇wLn

0 (θ
′,w)‖2

≤ Lwθ‖θ − θ′‖2
sup
θ

‖∇θLn
0 (θ,w)−∇θLn

0 (θ,w
′)‖2

≤ Lθw‖w −w′‖2,

(8)

where Lww, Lwθ and Lθw are positive constants. Further-

more, by the strongly-concavity of L0 and given xn ∈ X ,

we know that for any θ1 and θ2 ∈ Θ,

Ln
0 (θ1,w)− Ln

0 (θ2,w)

≤ 〈∇θLn
0 (θ,w),θ1 − θ2

〉− μ

2
‖θ1 − θ2‖22.

(9)

As the variance of the stochastic gradient is bounded by

σ2 > 0, it means that

E
[‖∇w�(w)−∇wL0(w)‖22

] ≤ σ2. (10)

To prove the main result, we need the following two im-

portant lemmas.

Lemma 1. Suppose that L0 in (7) of submission (Line 400)
satisfies the Lipschitz gradient conditions as (8) and L0 is
μ-strongly concave in Θ, we have L0 is Lipschitz smooth
with L0

L0 =
LwθLθw

μ
+ Lww. (11)

It holds that

L0(w1) ≤ L0(w2) + 〈∇wL0(w2),w1 −w2〉
+

L0

2
‖w1 −w2‖22,

(12)

and

‖∇wL0 −∇wL0(w2)‖2 ≤ L0‖w1 −w2‖2. (13)

Proof. By the strongly-concavity of L0 and given xn ∈ X ,

for any θ1, θ2 and the corresponding w1, w2 , we have

Ln
0 (θ1,w2)− Ln

0 (θ2,w2)

≤ 〈∇θLn
0 (θ2,w2),θ1 − θ2

〉− μ

2
‖θ1 − θ2‖22

≤ − μ

2
‖θ1 − θ2‖22.

(14)

The second inequality is true as

〈∇θLn
0 (θ2,w2),θ1 − θ2〉 ≤ 0.



In addition, we have

Ln
0 (θ2,w2)− Ln

0 (θ1,w2)

≤ 〈∇θLn
0 (θ1,w2),θ2 − θ1

〉− μ

2
‖θ1 − θ2‖22

≤ − μ

2
‖θ1 − θ2‖22.

(15)

Combining (14) and (15), we have

μ‖θ1 − θ2‖22
≤ 〈∇θLn

0 (θ1,w2),θ2 − θ1〉
≤ 〈∇θLn

0 (θ1,w2)−∇θLn
0 (θ1,w1),θ2 − θ1〉

≤ ‖∇θLn
0 (θ1,w2)−∇θLn

0 (θ1,w1)‖2‖θ2 − θ1‖2
≤ Lθw‖w2 −w1‖2‖θ2 − θ1‖2,

(16)

where the second inequality holds as

〈∇θLn
0 (θ1,w1),θ2 − θ1〉 ≤ 0,

the third inequality follows from the Cauchy-Schwarz in-

equality, and the last one holds by the Lipschitz smoothness

of the gradients of L0 (8).

For any n ∈ [N ], we have

‖∇wLn
0 (θ1,w1)−∇wLn

0 (θ2,w2)‖2
≤ ‖∇wLn

0 (θ1,w1)−∇wLn
0 (θ2,w1)‖2

+ ‖∇wLn
0 (θ2,w1)−∇wLn

0 (θ2,w2)‖2
≤ Lwθ‖θ1 − θ2‖2 + Lww‖w1 −w2‖2

=

(
LwθLθw

μ
+ Lww

)
‖w1 −w2‖2,

(17)

where the first inequality follows from the triangle inequal-

ity, and the second inequality holds due to (16) and the Lip-

schitz smoothness of the gradients of L0 (8). By the defini-

tion of L, it holds that

‖∇wL0(w1)−∇wL0(w2)‖2

=

∥∥∥∥∥ 1

N

N∑
n=1

(∇wLn
0 (θ1,w1)−∇wLn

0 (θ2,w2))

∥∥∥∥∥
2

≤ 1

N

N∑
n=1

‖∇wLn
0 (θ1,w1)−∇wLn

0 (θ2,w2)‖2

≤
(
LwθLθw

μ
+ Lww

)
‖w1 −w2‖2.

(18)

With the definition of the Lipschitz smoothness, we com-

plete the proof.

Lemma 2. Suppose that L0 in (7) of submission (Line 400)
satisfies the Lipschitz gradient conditions as (8) and L0 is
μ-strongly concave in Θ, the approximate stochastic gradi-
ent ∇w �̂(w) (6) satisfies

‖∇w �̂ (w)−∇w�(w)‖2 ≤ Lwθ

√
δ

μ
, (19)

where x̂adv(x,w) is a δ-approximate solution to x∗
adv(x,w)

with given x ∈ X .

Proof. By the definitions of ∇w �̂ and ∇w�, we have

‖∇w �̂ (w)−∇w�(w)‖2

=

∥∥∥∥∥∥
1

|B|
|B|∑
i=1

(∇wL0(x̂adv(xi,w),w)

1

|B|
|B|∑
i=1

−∇wL0(x
∗
adv(xi,w),w))

∥∥∥∥∥∥
2

≤ 1

|B|
N∑

n=1

‖∇wL0(x̂adv(xi,w),w)

1

|B|
|B|∑
i=1

−∇wL0(x
∗
adv(xi,w),w)‖2

≤ 1

|B|
|B|∑
i=1

Lwθ‖θ̂ − θ∗‖2,

(20)

where the second inequality follows from the triangle in-

equality, the third inequality holds due to the gradient Lips-

chitz condition, and θ̂ is the parameter of strategy network

corresponding to x̂adv(xi,w), θ∗ is similar.

Since x̂adv(xi,w) is a δ-approximate adversarial exam-

ple generated by the strategy network, we have〈
θ∗ − θ̂,∇θL0(θ̂,w)

〉
≤ δ. (21)

In addition, it holds that〈
θ̂ − θ∗,∇θL0(θ

∗,w)
〉
≤ 0. (22)

Putting (21) and (22) together gives birth to〈
θ̂ − θ∗,∇θL0(θ

∗,w)−∇θL0(θ̂,w)
〉
≤ δ. (23)

Moreover, by the strongly concavity of L0 and (16), we

have

μ‖θ∗ − θ̂‖22
≤ 〈∇θLn

0 (θ
∗,w)−∇θLn

0 (θ̂,w), θ̂ − θ∗〉
≤ δ.

(24)



Consequently, it immediately yields

‖θ∗ − θ̂‖2 ≤
√

δ

μ
. (25)

Substituting (25) into (20), we complete the proof.

Proof. By Lemma 1, we have

L0(w
t+1) ≤ L0(w

t) +
L0

2
‖wt+1 −wt‖22

+
〈∇wL0(w

t),wt+1 −wt
〉
.

Due to

wt+1 = wt − ηt∇w �̂(wt),

it holds that

L0(w
t+1)

≤ L0(w
t)− ηt‖∇wL0(w

t)‖22 +
L0η

2
t

2
‖∇w �̂(wt)‖22

+ ηt〈∇wL0(w
t),∇wL0(w

t)−∇w �̂(wt)〉

= L0(w
t)− ηt

(
1− L0ηt

2

)
‖∇wL0(w

t)‖22

+ ηt

(
1− L0ηt

2

)
〈∇wL0(w

t),

∇wL0(w
t)∇wL0(w

t)−∇w �̂(wt)〉

+
L0η

2
t

2
‖∇w �̂(wt)−∇wL0(w

t)‖22

= L0(w
t)− ηt

(
1− L0ηt

2

)
‖∇wL0(w

t)‖22

+ ηt

(
1− L0ηt

2

)
〈∇wL0(w

t),

∇wL0(w
t)∇w�(wt)−∇w �̂(wt)〉

+ ηt

(
1− L0ηt

2

)
〈∇wL0(w

t),

∇wL0(w
t)∇wL0(w

t)−∇w�(wt)〉

+
L0η

2
t

2
‖∇w �̂(wt)−∇w�(wt)

+
L0η

2
t

2
+∇w�(wt)−∇wL0(w

t)‖22

≤ L0(w
t)− ηt

2

(
1− L0ηt

2

)
‖∇wL0(w

t)‖22

+
ηt
2

(
1− L0ηt

2

)
‖∇w�(wt)−∇w �̂(wt)‖22

+ ηt

(
1 +

L0ηt
2

)
〈∇wL0(w

t),

∇wL0(w
t)∇wL0(w

t)−∇w�(wt)〉

+ L0η
2
t ‖∇w �̂(wt)−∇w�(wt)‖22

+ L0η
2
t ‖∇w�(wt)−∇wL0(w

t)‖22
(26)

Taking expectation on both sides of the above inequality



conditioned on wt, then we have

E[L0(w
t+1)− L0(w

t)|wt]

≤ − ηt
2

(
1− L0ηt

2

)
‖∇wL0(w

t)‖22

+
η

2

(
1 +

3ηtL0

2

)
δL2

wθ

μ
+ L0η

2
t σ

2.

(27)

Then we do the telescope sum over t = 0, . . . , T − 1, we

obtain

T−1∑
t=0

ηt
2

(
1− L0ηt

2

)
E[‖L0(w

t)‖22]

≤ E[L0(w
0)− L0(w

T )] + L0

T−1∑
t=0

η2t σ
2

+

T−1∑
t=0

η

2

(
1 +

3ηtL0

2

)
δL2

wθ

μ
.

(28)

Choosing ηt = η1 as

η1 = min

⎛
⎝ 1

L0
,

√
L0(w0)−min

w
L0(w)

σ2TL0

⎞
⎠ , (29)

it holds that

1

T

T−1∑
t=0

E
[‖∇L0(w

t)‖22
] ≤ 4σ

√
ΔL0

T
+

5δL2
wθ

μ
, (30)

where Δ = L0(w
0)−min

w
L0(w).

3. Details of the databases
CIFAR-10, CIFAR-100, and Tiny ImageNet are the most

widely used databases for the evaluation of adversarial ro-

bustness. The CIFAR-10 dataset contains 50,000 training

images and 10,000 test images, which covers 10 classes of

images in the size of 32× 32. The CIFAR-100 dataset also

contains 50,000 training images and 10,000 test images in

the size of 32 × 32, but it covers 100 classes. The Tiny

ImageNet database is a subset collected from the ImageNet

database, which covers 200 classes with 600 images in the

size of 64 × 64 for each class. As there are no labels for

test images of Tiny ImageNet, following [4], we evaluate

methods on the validation set.

4. Detailed Settings for LAS-AT
LAS-PGD-AT: The proposed LAS-PGD-AT is imple-

mented based on PGD-AT [6], which performs the early

stopping adversarial training. PGD-AT is trained on the ad-

versarial examples generated by a fixed PGD attack strat-

egy. It has three stationary attack parameters that depict

how to attack, i.e., the maximal perturbation strength, the

attack step, and the attack iteration. Hence, the strategy net-

work of our LAS-PGD-AT has three parallel softmax layers

to predict the three attack parameters. Following the de-

fault setting in [6], we adopt SGD with momentum 0.9,

weight decay 5× 10−4, and batch size 128. LAS-PGD-AT

and PGD-AT [6] are trained for 110 epochs. The learning

rate decays with a factor of 0.1 at the 100 and 105 epochs,

respectively.

LAS-TRADES: The proposed LAS-TRADES is imple-

mented based on TRADES [10] which exploits a regular-

ized surrogate loss to perform adversarial training. Since

TRADES uses the same three attack parameters as PGD-

AT to depict how to attack, the strategy network of LAS-

TRADES shares the same output configuration as LAS-

PGD-AT. Different from LAS-PGD-AT, LAS-TRADES is

trained with the regularized surrogate loss rather than the

cross-entropy loss. Following the default setting in [10],

we adopt SGD with momentum 0.9, weight decay 2×10−4,

and batch size 128. LAS-TRADES and TRADES [10] are

trained for 100 epochs. The learning rate decays with a fac-

tor of 0.1 at the 75 and 90 epochs, respectively.

LAS-AWP: The proposed LAS-AWP is implemented

based on AWP [9]. AWP has 3 stationary attack parame-

ters, i.e., the maximal perturbation strength, the attack step,

and the attack iteration. Hence, the strategy network of

LAS-AWP has 3 parallel softmax layers to predict these at-

tack parameters. Following the default setting in [9], we

adopt SGD with momentum 0.9, weight decay 5 × 10−4,

and batch size 128. LAS-AWP and AWP [9] are trained for

200 epochs. The learning rate decays with a factor of 0.1 at

the 100 and 150 epochs, respectively.

5. Detailed Training And Evaluation Settings
In Table 7 of the manuscript, we compared our LAS-

Madry-AT with CAT [1], DART [7], and FAT [11]. We

adopt the default setting in their original paper to train them.

As for LAS-Madry-AT, it is trained for 200 epochs. The

learning rate decays with a factor of 0.1 at the 100 and 150

epochs, respectively. We report the performance at the last

epoch. In Fig. 3 of the manuscript, we compared our LAS-

PGD-AT with OHL [5] and AdvHP [12]. OHL [5] and Ad-

vHP [12] search the hyper-parameter of data augmentation

for image classification. For a fair comparison, we use the

same hyper-parameters and search range for them as ours.

Specifically, the range of the maximal perturbation strength

is set from 3 to 15, the range of the attack step is set from 1

to 6, and the range of the attack iteration is set from 3 to 15.

We also adopt the same strategy network and training set-

ting for them. Specifically, for the target network, we adopt



Figure 2. The influence of the number of iteration in PGD-AT [6].

Curves represent performance of PGD-AT [6] with different num-

bers of iteration for training. X-axis represents the number of iter-

ation of the PGD attack. Y-axis represents the accuracy of adver-

sarial examples generated by the PGD attack method.

Figure 3. The influence of the step size in PGD-AT [6]. Curves

represent performance of PGD-AT [6] with different step sizes for

training. X-axis represents the step size of the PGD attack. Y-axis

represents the accuracy of adversarial examples generated by the

PGD attack method.

SGD momentum optimizer with a learning rate of 0.1, and

a weight decay of 5× 10−4. ResNet18 is used as the back-

bone of the strategy network. The training epoch is set to

110. The learning rate decays with a factor of 0.1 at the 105

and 110 epochs, respectively. In this way, the difference be-

tween our proposed method and them is the loss term which

guides the learning of the strategy network.

6. More Comparisons with AWP
Comparisons with AWP trained with more iterations
and a larger perturbation strength. To evaluate the pro-

posed method’s effectiveness in improving the model ro-

bustness, we compare our LAS-AWP with the AWP [9]

trained with more iterations (Itrain = 15) and a larger per-

Figure 4. The influence of the maximal perturbation strength in

PGD-AT [6]. Curves represent performance of PGD-AT [6] with

different maximal perturbation strengths for training. X-axis rep-

resents the perturbation strength of the PGD attack. Y-axis repre-

sents the accuracy of adversarial examples generated by the PGD

attack method.

turbation strength (εtrain = 15). The results are shown in

Table 1. Our LAS-AWP not only achieves a higher ro-

bust accuracy under all attack scenarios but also achieves

a higher clean accuracy on clean images. We can attribute

the improvements to using automatically generated attack

strategies instead of more iterations and a larger perturba-

tion strength.

7. Influence of Attack Parameters
In order to explore the influence of the maximal pertur-

bation strength, the number of iteration, and the step size in

adversarial training, we conduct an experiment on CIFAR10

by using the PGD-AT [6] with different maximal perturba-

tion strengths, different numbers of iteration, or different

step sizes to perform adversarial training. During testing,

we use PGD attack with different perturbation strengths,

different numbers of iteration, or different step sizes to eval-

uate the robustness of the trained target model. We use

ResNet18 as the target model.

To explore the influence of the maximal perturbation
strength, we use the PGD-AT [6] with different maximal

perturbation strengths to train the target model. We then

use PGD attack with different perturbation strengths to at-

tack the target model. The number of iteration of the PGD

attack is set to 10 and the step size is set to 2. Note that

most works use the PGD attack method with the pertur-

bation strength of 8, iteration of 10, and step size of 2

(PGD(8,10,2)) to evaluate model robustness. The results are

shown in Fig. 4. ‘Train Epsilon’ represents the maxi-

mal perturbation strength used in adversarial training while

‘Attack Epsilon’ represents the perturbation strength

of the PGD attack for evaluation.



Table 1. Test robustness (%) on the CIFAR-10 database using ResNet18. Number in bold indicates the best.

Method Clean PGD-10 PGD-20 PGD-50 C&W AA

AWP(Itrain = 10, εtrain = 8) 80.72 55.33 54.78 54.28 51.67 49.44

AWP(Itrain = 10, εtrain = 15) 66.73 52.24 52.14 52.06 48.1 47.03

AWP(Itrain = 15, εtrain = 8) 80.13 55.82 55.24 55.13 51.53 49.62

LAS-AWP(ours) 83.03 56.45 55.76 55.43 53.06 50.77

Figure 5. The evolution of the generated perturbation strength of several samples during the whole training process. X-axis represents the

training epoch. Y-axis represents the perturbation strength.

Table 2. Hyperparameter selection. Test robustness (%) on the

CIFAR-10 database using ResNet18. Number in bold indicates

the best.

Method Clean PGD-10 AA

α = 2
β = 2 82.32 54.27 49.46

β = 4 82.05 54.29 49.89

β = 8 82.01 54.28 49.65

α = 4
β = 2 82.02 54.36 49.57

β = 4 81.64 54.05 49.57

β = 8 81.92 54.19 49.58

α = 8
β = 2 81.73 54.10 49.28

β = 4 82.18 54.30 49.38

β = 8 82.10 54.35 49.52

Observations are summarized as follows. First, though

using a large maximal perturbation strength for training

improves the robustness, it decreases the clean accuracy.

For example, when Train Epsilon = 15, the clean

accuracy (i.e., Attack Epsilon = 0) drops to 76.7%
which is much worse than that of Train Epsilon ≤
8. Second, using a large Train Epsilon can achieve

better performance than using a small one only when

the Attack Epsilon is large. Comparing the perfor-

mance of Train Epsilon = 8 and Train Epsilon

= 15, the accuracy of Train Epsilon = 15 is lower

when Attack Epsilon < 8, while the accuracy is

higher when Attack Epsilon > 8. Third, when

Attack Epsilon = 8, increasing Train Epsilon
could slightly improve the robustness, but gets sharp clean

accuracy drop.

As mentioned above, when the perturbation strength of

PGD attack is 8 for evaluation (i.e., Attack Epsilon =

8), using a large maximal perturbation strength can only

slightly improve the robustness, but will hurt the clean ac-

curacy a lot. Hence, in the manuscript, the maximal per-
turbation strengths of other state-of-the-art adversarial
training methods are set to the same as their original pa-
pers, i.e., Train Epsilon = 8. The range of the maxi-

mal perturbation strength is set to [3,15] in our method.

To explore the influence of the number of iteration,
we use the PGD-AT [6] with different numbers of iteration

to train the target model. We then use PGD attack with

different numbers of iteration to attack the target model.

The perturbation strength of the PGD attack is set to 8 and

the step size is set to 2. The results are shown in Fig. 2.

‘Train Iteration’ represents the number of iteration

used in adversarial training while ‘Attack Iteration’

represents the number of iteration of the PGD attack for

evaluation. As shown in Fig. 2, we can observe a sim-

ilar phenomenon as in Fig. 4. Increasing the number of

iteration could improve the robustness, but it will hurt the

clean accuracy. When Train Iteration is larger than

10, we can only slightly improve the robustness by increas-



ing Train Iteration, but gets a slight drop in clean

accuracy.

To explore the influence of the step size, we use

the PGD-AT [6] with different step sizes to train the tar-

get model. We then use PGD attack with different step

sizes to attack the target model. The maximal perturba-

tion strength of the PGD attack is set to 8 and the number

of iteration is set to 10. The results are shown in Fig. 3.

‘Train Step Size’ represents the step size used in ad-

versarial training while ‘Attack Step Size’ represents

the step size of the PGD attack for evaluation. As shown

in Fig. 3, when Train Step Size is larger than 2, the

clean accuracy is nearly the same, while the robustness has

marginal changes.

8. Selection of Hyper-parameters
There are two trade-off hyper-parameters in the objective

function of the proposed method, i.e., α and β in Eq. (8)

in the manuscript. In this section, we present the perfor-

mance of our proposed LAS-PGD-AT [6] with different α
and β pairs on CIFAR-10. The range of α and β is set to

{21, 22, 23}. The results are shown in Table 2.

When α = 2 and β = 2, LAS-PGD-AT [6] achieves

the best performance in clean accuracy and PGD-10 at-

tack. And when α = 2 and β = 4, the proposed method

achieves the best performance in APGD-T, FAB, SQUARE,

and AA attacks. And it also achieves the competitive per-

formance in clean accuracy and PGD-10 attack. Moreover,

our method is not sensitive to the two hyper-parameters as

the robustness and the clean accuracy does not change in a

large range. Hence, in this paper, we set α to 2 and β to 4.

9. Illustration of the Evolution of Generated
Perturbation Strength

Given a sample, our strategy network generates an at-

tack strategy. As the maximal perturbation strength affects

the performance the most, we illustrate how the generated

perturbation strength changes during adversarial training.

Fig. 5 presents the evolution of the generated perturba-

tion strength of three randomly selected images during the

whole training process.

It can be observed that the perturbation strength of the

same sample changes dynamically during the training pro-

cess. At the beginning of adversarial training, the perturba-

tion strength is small. As the training process goes on and

the robustness of the target network improves, the perturba-

tion strength becomes larger.

10. Experiments on more databases
We conduct experiments under the same L∞ = 8 as

the manuscript. 1) For GTSRB, following [2], we adopt

Table 3. Test robustness (%) on GTSRB using ResNet18.

Method Clean PGD-50 C&W AA

Clean 98.36 15.60 16.31 13.07

PGD-AT [6] 90.49 62.11 62.83 60.80

TRADES [10] 88.17 63.02 62.86 61.35

AWP [9] 92.68 63.85 64.65 61.66

LAS-AT(ours) 92.27 64.98 64.48 62.64

LAS-TRADES(ours) 90.26 64.62 64.14 62.59

LAS-AWP(ours) 93.79 66.68 67.56 64.44

Table 4. Test robustness (%) on ImageNet using ResNet50.

Method Clean PGD-50 C&W AA

PGD-AT 47.86 23.63 23.04 15.23

LAT-AT(ours) 48.03 25.97 24.21 16.56

Table 5. Test robustness (%) on CIFAR-10 using WRN34-10.

â Clean PGD-50 C&W AA

PGD-10 86.23 56.12 55.73 53.58

PGD-20 86.19 56.14 55.76 53.68

PGD-50 86.2 56.21 55.68 53.75

C&W 86.29 55.94 55.48 53.62

ResNet18 as backbone. As shown in Table 3, LAS-AT im-

proves the robust accuracy of three base models under all

attack scenarios and also improves their clean accuracy. 1)
For ImageNet, following [8], we compare with PGD-AT us-

ing ResNet50 as backbone. As shown in Table 4, LAS-AT

achieves the better clean and robust accuracy.

11. Selection of the Strategy

The strategy â is used to evaluate the robustness of the

model updated with the current strategy, which can be any

attack strategy. In our experiments, â is set to the widely

used attack strategy, i.e., PGD-10. Here we conduct exper-

iments with different attack strategies â on CIFAR-10 with

WRN34-10 as backbone, and find that our method is not

affected too much by â, as shown in Table. 5.

12. Discussion about the Training Efficiency

Compared to ordinary training, the most time-consuming

part of AT is adversarial example (AE) generation. 1) As

claimed in Sec. 3.4 , our method calls AE generation to

update the target network (T-net) with from 3 to 15 attack

iterations (Line 588), and to update the strategy network
(S-net) with 10 attack iterations. The S-net is updated once

after k-times updates of the T-net. Thus, for each update

of T-net, our LAS-AT takes 15 + 10/k attack iterations at

most, while PGD-AT takes 10 iterations. 2) In experiments,

we set k = 40 (Line 640). Thus, in the worst case, LAS-

AT takes 52.5% more than PGD-AT. As shown in Tab. 1



of the manuscript, the actual additional training cost of our

method is about 40% of PGD-AT’s cost. Our method can

be scalable to large datasets.
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