
Learning Invisible Markers for Hidden Codes in Offline-to-online Photography
Supplement

1. Implementation Details and Settings of the
Distortion Network

In this paper, we simulate eight kinds of distortions in

the distortion network during training. According to their

sources, these distortions are divided into three categories:

the distortion caused by environmental factors (brightness,

contrast, and color distortions), the distortion caused by

cameras (noise, image compression, and defocusing blur),

and the distortion caused by photographers (motion blur,

and geometric distortion). The detailed settings of these dis-

tortions are set as:

Brightness, Contrast, and Color Distortions We de-

fine the contrast offset as fcon, the brightness offset as fbri,
and the color offset as fcol. Thus, the distorted image Idis
caused by these three kinds of distortions is formulated as:

Idis = (1.0 + fcon) ∗ (IoriRGB
+ fcolRGB

) + fbri (1)

where fcol is a triple representing the color offsets of R,

G, and B channels. When training, the pixel values of Iori
and Idis are normalized to [0.0, 1.0]. Thus, fbri is uniformly

sampled from [−0.3,+0.3], fcon is uniformly sampled from

[−0.3,+0.3], and the elements of fcol are uniformly sam-

pled from [−0.1,+0.1].
Noise, Image Compression, and Defocusing Blur To

simulate noise, we add random noise to the generated im-

age of the output with 50% probability. The noise range is

[−0.1,+0.1].
For image compression, we use JPEG compression to

simulate the compression effect in the imaging process from

screens to cameras. We use the differentiable approxima-

tion proposed by [2] to approximate the rounding opera-

tions:

rounding(x) =

{
x3, |x|<0.5
x, |x| ≥ 0.5

(2)

which has nonzero derivative almost everywhere. The qual-

ity factor q is randomly selected from [50, 100].
We use Gaussian blur to simulate defocusing blur. The

kernel size of the filtering window is (3, 3) and the standard

deviations of the horizontal and vertical directions to 0.1

and 1, respectively.

Motion Blur and Geometric Distortion For motion

blur, the kernel size of the motion blur window is (3, 3) and

the angle range is (−35◦,+35◦). In each iteration of train-

ing, we first apply Gaussian blur with 80% probability, and

then motion blur with 80% probability.

The geometric distortion is simulated by a combina-

tion of 2D transformation and 3D transformation. For 2D

geometric transformation, the range of rotation degrees is

[−15◦,+15◦] and the scaling range is [0.8, 1.0]. For 3D ge-

ometric transformation, The range of the perspective scale

is [0, 0.3]. In each iteration of training, we first apply 2D

transformation with 60% probability, and then 3D trans-

formation with 60% probability. Thus, 36% of the train-

ing images are processed by the combination of these two

transformations, 16% of the training images are without any

geometric distortions, and 48% of the training images are

processed by one of these two transformations.

The above operations are differentiable, implemented by

PyTorch1 and Kornia2.

2. Details of Simulation-based Robustness Test
In this section, we describe the distortion settings in the

experiments in Section 4.4 of the main body. The distorted

images are generated by NumPy3 and OpenCV4 in these ex-

periments. We present some examples of these distortions

in Figure. 1.

Brightness, Contrast, and Color Distortions In this

experiment, the offset range of Iori and Idis in Eq. 1 is

[0,255]. Thus, the brightness offset fbri in Eq. 1 includes 8

levels ranging from ±10 to ±80 and the color offset fcolRGB

includes 6 levels ranging from ±5 to ±30. For adjusting

contrast, the contrast offset fcon in Eq. 1 includes 5 lev-

els ranging from ±0.1 to ±0.5. Adjusting brightness and

contrast are divided into increase and decrease.

Noise, JPEG Compression, and Defocusing Blur For

noise, we test both random noise and Gaussian noise, where

random noise is used during training and Gaussian noise is

used to verify the generalization ability of our model for

1https://pytorch.org/
2https://kornia.github.io/
3https://numpy.org/
4https://opencv.org/

1

Without Distortion Adjust BrightnessAdjust Contrast Median Blur

En
co

de
d

Im
ag

e
Lo

ca
liz

at
io

n
R

es
ul

ts
C

or
re

ct
ed

 S
ub

-I
m

ag
e

R
ec

ov
er

ed
 R

es
ul

ts

Motion BlurJPEG (q=10) Perspective Warp Adjust Color Gaussian Noise

Figure 1. The samples of different simulated distortion. The distortion categories used in experiments include adjusting contrast, adjusting

brightness, adjusting color, random noise, Gaussian noise, JPEG compression, median blur, mean blur, Gaussian blur, bilateral filtering,

motion blur, and geometric distortion.

unknown distortion category. The intensity of random noise

includes 10 levels ranging from 0.01 to 0.1. The intensity

of Gaussian noise is controlled by the standard deviation σ
that is divided into 10 levels ranging from 0.001 to 0.01.

The degree of JPEG compression is controlled by the

quality factor q. In this experiment, the quality factor q of

JPEG includes 9 levels ranging from 90 to 10.

For defocusing blur, we use Gaussian blur, mean filter-

ing, median filtering, and bilateral filtering to generate test

images. Except for Gaussian blur, the other three kinds of

blur are unknown in training stages and are used to verify

the generalization ability of our model. The degree of blur

is positively correlated with the filtering kernel size. For

Gaussian blur, mean filtering, and median filtering, the ker-

nel size is divided into 3 levels: 3× 3, 5× 5, and 7× 7. For

bilateral filtering, the kernel size is divided into 3 levels in-

cluding 5×5, 7×7, and 9×9. In addition, the σ parameter

of color space and the σ parameter of coordinate space are

set to 41.

Motion Blur and Geometric Distortion For motion

blur, the kernel size is divided into 3 levels: 3×3, 5×5, and

7 × 7 and the motion angle include 3 values: 5◦, 15◦, and

30◦. The motion angle used in Table 1 of the main body is

15◦.

For geometric distortion, we add offsets to the coordi-

nates of image vertices to represent geometric distortions,

which is similar to StegaStamp [3]. The values of the offset

d include 6 levels ranging from [-5,+5] to [-30,+30].

3. Comparison Details with the SOTA Methods

In this section, we supplement some experiments to com-

pare our method with StegaStamp [3] and RIHOOP [1] un-

der different distortion types in addition to geometric dis-

tortion. Table 1 shows that both our models and the SOTA

methods are robustness to blur, motion blur, color distor-

tion, and noise. For JPEG compression, when the qual-

ity factor (q) decreased to 10, the localization module per-

forms poorly, which significantly increases the error rate

(BER=26.17%). These indicate that our localization net-

work is sensitive to serious JPEG compression. However,

when we directly input the compressed sub-images (q=10)

to our decoder as StegaStamp (BER=7.60%) and RIHOOP

(BER=4.55%), the error rate (4.62%) is similar to the SOTA

methods.

For geometric distortion, StegaStamp and RIHOOP do

not design specific module to process it and their de-

coders cannot learn enough robustness to geometric distor-

tions. Thus, the proposed localization module is specifi-

cally designed to locate codes under geometric distortions,

which is also the motivation of hiding codes in a local-

ized region because locating is the premise of decoding

in displaying/printing-camera applications. For the distor-

tions other than geometric distortion, the distortion layers

in training can enhance the robustness of the localization

module and the decoder. For example, when we retrain our

model without motion blur, the bit error rates under motion

blur increased by 3.04%.

Original Image+
Sub-Image Encoded Ground Truth Photo Recovering Photo Recovering Photo Recovering

Figure 2. Examples from different shooting conditions.

4. Analysis to Occlusion
We also analyze the robustness of our model to occlu-

sion in this supplementary materials. When occluding the

encoded sub-images, our model fails since we need to locate

and decode the invisible code. While, our model is not af-

fected when occluding the regions outside the encoded sub-

images. In addition, we occlude the boundaries of the entire

images by perspective transformation and zero padding, be-

cause occlusions in boundaries are more general in real ap-

plications such as scanning barcodes. In this experiment,

the decoding rates of StegaStamp and RIHOOP are low

(StegaStamp: 8% and RIHOOP: 0%). However, our model

can still maintain 74% decoding rate (decoded by barcode

recognizers (pylibdmtx). Our model failed only when the

encoded sub-images appear at the edges of the entire im-

ages.

5. Supplemental Videos
We provide two supplemental videos to demonstrate the

in-the-wild applications of our model. The attached videos

are MPEG-4 files with H.264 encoding. We would like to

Method
Bit Error Rate ↓ (Distortion Levels)

blur

(7X7)

motion

(4X4)

light

(30)

noise

(0.1)

JPEG

(q=20)

StegaStamp 0.30% 0.42% 0.65% 0.52% 1.05%

RIHOOP 0.32% 0.42% 0.30% 0.58% 0.90%

Ours 0.09% 0.31% 0.07% 0.08% 2.65%

Table 1. The Comparison Results with SOTA Methods under Dis-

tortions

apologize that, due to the commercial value of the proposed

model, our source code is currently confidential. If the read-

ers need codes for academic research, please contact the

first author.

• displaying.mp4: The first video presents the applica-

tion in display-camera scenarios (https://youtu.
be/B37Qt9hwyzs).

• printing.mp4: The first video presents the application

in print-camera scenarios (https://youtu.be/
X2ZfmPeRxSw).

Each video is concatenated by three sub-videos side by

side. The left sub-video represents the user perspective

where the red box, simulating the box in the scanning app,

is to roughly tell where the user should scans. The middle

sub-video represents the real-time back-end results:

(1) Cropped Input: according to the position of the red

box, we crop a sub-region from each frame, resize this sub-

region to 256×256, and input it to the model in users’ sides

(the localization network and the decoder).

(2) Locating Results: the locating results of the local-

ization network.

(3) Corrected Sub-Image: According to the locating re-

sults, we correct the encoded sub-image from the cropped

input with geometric distortion and input this corrected sub-

image to the decoder.

(4) Recovery Results: the recovery results of the de-

coder.

In these videos, we normalize the recovered data matri-

ces as follows: if more than half of the pixels representing

the same bit unit are 255, the unit is 1; otherwise, it is 0.

6. Additional Example Results
We provide more examples of our model in Figure. 2.

For good visual quality, we select the areas containing rich

texture features as the sub-images to hide data matrices. We

can find that the locating results are related to the relative

geometric distortions of the sub-images, but not to the ab-

solute backgrounds of the entire images.

References
[1] Jun Jia, Zhongpai Gao, Kang Chen, Menghan Hu, Xiongkuo

Min, Guangtao Zhai, and Xiaokang Yang. RIHOOP: Robust

Invisible Hyperlinks in Offline and Online Photographs. IEEE
Transactions on Cybernetics, pages 1–13, 2020. 2

[2] Richard Shin and Dawn Song. Jpeg-resistant Adversarial Im-

ages. In NeurIPS Workshop on Machine Learning and Com-
puter Security, 2017. 1

[3] Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp:

Invisible Hyperlinks in Physical Photographs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2117–2126, 2020. 2

