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In this supplementary material, we provide implementa-
tion details, results about the generalization ability of our
motion model, extended comparisons to related works, vi-
sualization of principal components, additional qualitative
results, run-time comparison, and discussions about limita-
tions, future work and broader impact of our approach.

1. Implementation Details
In this section, we first provide network architectures

used for the compositional encoder, Motion-Comp and
Shape-Comp networks in our framework. Next, we explain
the strategy of choosing the number of principal compo-
nents for our linear motion model. Finally, we discuss more
details in our experiments.

1.1. Network Architecture

Compositional Encoder Both the shape encoder and the
initial pose encoder take point cloud of the first time step as
input, and we adopted the same architecture as the spatial
encoder in Occupancy Flow (OFlow) [19]. The network is
a variation of PointNet [21] which has five residual blocks
as show in Fig. 1a. Each of the first four blocks has an
additional max-pooling operation to obtain the aggregated
feature of size (B, 1, C) where C denotes the dimension
of hidden layers, and an expansion operation (repeat the
pooled feature to the size (B,N,C)) to make it suitable
for concatenation. The output of the fifth block is passed
through a max-pooling layer and a fully connected layer to
get the final outputs of dimension 10 for shape parameter
and 72 for initial pose parameter.

Our temporal encoder, for the purpose of learning mo-
tion and auxiliary codes, is composed of a point feature ex-
tractor (shallow PointNet) and a double layers GRU [4], as
shown in Fig. 1b. The shallow PointNet extracts spatial
features for each input point cloud, which has 3 hidden lay-
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ers with hidden sizes equal to 128. We use the same max-
pooling and concatenating operations as the spatial encoder.
Then the per-frame features are processed sequentially by
the GRU layer to provide the latent vector of dimension 90
for motion code and 128 for auxiliary code.

Motion-Comp Network We design a conditional GRU for
our Motion-Comp network to learn the compensation of
the input motion sequence. Specifically, we use the mo-
tion code cm and auxiliary code ca as conditions, copy and
concatenate them with the pose parameter of each time step
estimated by our linear motion model. The detailed archi-
tecture is shown in Fig. 1c. The output of the conditional
GRU is the motion compensation, and we apply a residual
connection to obtain the refined motion sequence, i.e. per-
frame poses. We can recover body mesh sequences with the
predicted shape and per-frame pose codes by using SMPL
decoder, here we use the neutral shape model as in previous
work [6, 9, 10].

Shape-Comp Network We propose a Shape-Comp net-
work, in which a conditional GRU takes the auxiliary code
ca as input and predicts a new latent vector for each tem-
poral frame conditioned on the predicted pose (we follow
CAPE to represent each joint with the flattened rotational
matrix and filter the joints that are not related to clothing).
The latent vector of each frame is then fed into the graph
network to predict per-vertex offsets, which is similar to
the CAPE decoder. We remove the one-hot vector of cloth-
ing type and only use the predicted pose as condition since
we do not focus on the generative task. The architecture is
shown in Fig. 1d.

Implementation of GRUs We use the standard API of
GRU provided by PyTorch. All the GRUs in our frame-
work share the same architecture, which has 2 layers with
the hidden size of 512, except we apply an additional linear
layer for each GRU to transform the output dimensions for
different modules.

1.2. Linear Motion Model

For the linear motion model (Section 3.2 in the main pa-
per), we employ the Principal Component Analysis (PCA)
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Figure 1. Detailed network architectures in our framework.

to model the per-frame difference of the pose parameter re-
garding the first frame in a sequence. As stated in Sec. 3.2
of the main paper, we run PCA separately for the global
orientation (i.e. pelvis) and the remaining body joint rota-
tions. Inspired by Urtasun et al. [24], we choose the num-
ber of PCA components depending on the fraction of the
total variance of the training data that is captured by the
subspace, denoted by Q(m):

Q(m) =

∑m
i=1 λi∑M
i=1 λi

(1)

where m controls the number of principal components, λi

are ordered eigenvalues of the data covariance matrix such
that λi ≥ λi+1, and M is the total number of eigenvalues.
In our experiments, we choose m = 4 for the global ro-
tation and m = 86 for the remaining body joints rotation,
which satisfy Q(m) > 0.9. We visualize some principal
components in Fig. 5 and 6 (Sec. 4).

1.3. Experiment Details

Loss Functions Given an input point cloud sequence, our
model generates one shape code cs and three mesh se-
quences Xlinear, Xmotion and Xshape, which correspond to the
outputs of LMM, Motion-Comp network and Shape-Comp
network respectively. Each sequence has L = 30 mesh
frames and each mesh has K = 6890 vertices. We also have
the ground truth shape parameter c∗s and posed SMPL body
mesh sequence Ybody. Furthermore, we compute ground
truth offsets sequence by Yoffset = Mclothed − MSMPL,
where Mclothed and MSMPL stand for the vertices of the
clothed human mesh and corresponding SMPL body mesh
in the canonical pose respectively.

Then we define the reconstruction loss as the per-vertex
L1 error with the ground truth mesh

Lr (X,Y) =
1

LK

L∑
l=1

K∑
k=1

∥Xl,k −Yl,k∥1 . (2)

Furthermore, we apply L2 penalization on the predicted
shape code to further alleviate the ambiguity between body
shape and clothing, given by

Ls (c, c
∗) = ∥c− c∗∥22 . (3)

Finally, the total loss for training can be formulated as

L = λsLs (cs, c
∗
s) + λr1Lr (Xlinear,Ybody)

+ λr2Lr (Xmotion,Ybody)

+ λr3Lr (Xshape,Yoffset) ,

(4)

we set λs = λr1 = 1, λr2 = λr3 = 0 for the first training
stage and λs = λr2 = 1, λr3 = 30 and λr1 = 0 for the
second stage.
Backward Experiments For our auto-decoding based ex-
periments, i.e. completion and prediction, we use the trained
model to perform a backward fitting algorithm. Specifically,
we remove the encoder, freeze the parameters of the remain-
ing modules and optimize the SMPL parameters and latent
codes with back-propagation to produce the outputs as sim-
ilar to the observations as possible.

We initialize the SMPL parameters and latent codes with
the random vector sampled from a Gaussian distribution
N(0, 0.01) and use the Adam optimizer [8] with learn-
ing rate 3e−2 to perform back-propagation for 500 itera-
tions. In each iteration, we uniformly sample 8192 points



on the surface of the predicted meshes, and compute Cham-
fer loss [17,22] w.r.t the observed points for penalizing. Ad-
ditionally, we follow IPNet [2] to add pose and shape prior
terms, which penalize unnatural output bodies during opti-
mization.

Completion We conduct two different types of motion
completion experiments, i.e. temporal completion and spa-
tial completion. Given a temporal sequence of L = 30
frames, for temporal completion, we randomly select 15
frames as observation and optimize the SMPL parameters
and latent codes to complete the missing frames. We choose
HMMR [7] and 4D-CR-SMPL (an extension we implement
for 4D-CR [5]) as baselines. To implement 4D-CR-SMPL,
we replace their implicit decoder with the SMPL decoder,
and set the dimensions of their identity code and initial pose
code to 10 and 72 respectively. Then we can obtain the pose
code for each time step with the Neural ODE conditioned on
the motion code, and input it to the SMPL decoder with the
identity code to produce the reconstructed mesh frame. For
4D-CR-SMPL, we use the model trained on our dataset, and
for HMMR, we use the official pretrained model.

The goal of spatial completion is to complete the tempo-
ral sequence with partial spatial observation. To this end,
we use the raw scanned mesh sequences of CAPE [15], and
render the depth images of resolution 512 × 512 with the
approach illustrated in the main paper (Sec. 4.2) to simu-
late the real world scenario. We assume the camera poses
are known and back project the depth images to obtain par-
tial point clouds. We initialize our codes with the random
vectors sampled from a Gaussian distribution N(0, 0.01)
with no requirement for an additional initialization step like
NPMs [20], and use the Adam optimizer with learning rate
3e−2 to perform back-propagation for 500 iterations. Note
that in this experiment, we adopt one-directional point-to-
surface loss instead of two-directional Chamfer loss due to
the partial geometry. We show some qualitative examples
in Fig. 12.

2. Generalization of Our Motion Model

In this section, our goal is to investigate the capacity
of our motion model for representing novel motions from
another dataset. To this end, we choose some motion se-
quences from AMASS [16], a large 3D MoCap dataset.
And then we use our model trained on the CAPE dataset
[15], perform the similar backward algorithm in comple-
tion and prediction experiments to fit the whole sequence of
L = 30. Instead of dense SMPL, we randomly sample 8192
points from the SMPL mesh of each frame as observations,
then use the Chamfer loss to the points sampled from the
predicted mesh. Prior terms [2] are also used to penalize
the unnatural output. Since AMASS only provides SMPL
parameters, we disable the Shape-Comp network and use

the results from Motion-Comp network for visualization.
Fig. 2 shows that the proposed method successfully re-
constructs the full sequence from such sparse input, which
demonstrates the generalization capability of our model to
represent novel motions from another data source.

3. Extended Comparisons to Related Works

Comparison to HuMoR We compare with a SoTA human
body estimation method HuMoR [23] on the task of fitting
point cloud sequences. Specifically, we choose 100 mesh
sequences of 30 frames from our test set and randomly sam-
ple 8192 points from each frame. Then we use the pre-
trained model of both methods to conduct backward opti-
mization with 2 choices of loss functions, i.e. Chamfer loss
(HuMoR, Ours) or 3D keypoint loss (HuMoR∗, Ours∗). For
both losses, we also enabled prior losses to regularize the
predicted shape and motion for H4D. As shown in Tab. 1,
our method beats HuMoR in both cases. The qualitative
comparisons are shown in Fig. 3, HuMoR can only recover
the global movement trend without accurate limbs by using
Chamfer loss and gains a significant improvement when us-
ing 3D keypoints as supervision. In contrast, our method
obtains more accurate results in both cases.

PA-MPJPE ↓ MPJPE ↓ PVE ↓ Accel ↓

HuMoR 70.7 46.0 45.4 10.5
Ours 32.6 30.0 27.6 4.9

HuMoR∗ 25.7 27.1 26.1 7.3
Ours∗ 16.2 14.5 11.4 4.5

Table 1. Quantitative comparisons to HuMoR. By default, the
Chamfer loss between the input point cloud and points sampled
from the reconstructed mesh is adopted. And ∗ indicates that we
use 3D keypoint as supervision.

Comparison to NPMs We provide the comparisons to
NPMs [20] on depth completion task. We choose 100 se-
quences and use the pretrained model of NPMs to perform
completion from partial depth. Specifically, given a depth
image sequence of 30 frames, we project the depth values
into a 2563-SDF grid to generate the inputs for NPMs, and
then optimize the latent codes frame-by-frame with the de-
fault setup. Note that NPMs runs 10 times slower than H4D
and uses twice of the GPU memory. Tab. 2 shows that our
model outperforms NPMs, either w/ or w/o (NPMs∗) en-
coders for code initialization, on both metrics. As can be
seen from the qualitative results shown in Fig. 4, NPMs
produces accurate motion but fails to recover fine-grained
geometry, while our results are plausible on both shape and
motion.
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Figure 2. Results of the novel motions from AMASS dataset. To investigate the generalization ability of our method, we choose 4
motion sequences from the AMASS dataset, and use our model trained on the CAPE dataset to fit them by using the backward algorithm.

4. Visualization of Principal Components

The linear motion model in our framework totally has 90
principal components, the first 4 components are for global

rotation (pelvis joint) and the rest 86 for other body joints.
We start from the same rest pose and visualize some prin-
cipal components in Fig. 5 and 6. Specifically, for each
shown component, we select different scaling factors (be-



IoU ↑ CD ↓

NPMs∗ 79.3% 0.104
NPMs 85.5% 0.042
Ours 87.7% 0.037

Table 2. Quantitative comparisons to NPMs. We use the ran-
dom vectors sampled from a Gaussian distribution N (0, 0.01) to
initialize the codes for NPMs∗ and Ours, and use the pretrained
encoders to obtain initialization for NPMs.

fore each row) and multiply them with this component to
show the motion results. As shown, PC0 roughly controls
the global rotation around the vertical axis; PC4 and PC6
affect the opening and closing of the upper arm and fore-
arm, respectively; PC7 is related to the bending of the legs;
and PC9 tells the movement of arms and legs at the same
time. In general, the positive and negative scaling factors
of components correspond to opposite directions of motion,
and the absolute value affects the magnitude of the motion.

5. Additional Qualitative Results

We show additional qualitative examples on 4D recon-
struction in Fig. 7, shape and motion recovery in Fig. 9,
temporal completion in Fig. 10 and 11, spatial completion
in Fig. 12, future prediction in Fig. 8, motion retargeting in
Fig. 13 and ablation study in Fig. 14.

6. Run-time

In Tab. 3, we show the per sequence run-time of our
method and previous 4D representation methods on forward
inference for 4D reconstruction and backward optimization
for temporal completion. Note that we report the time cost
to run a complete backward optimization process for a se-
quence (500 iterations). The length of the full sequence is
L = 30, and all models run on a single NVIDIA 2080Ti
GPU. Instead of the Neural ODE [3], we model the human
motion using the linear model and GRU-based compensa-
tion networks. As can be seen, our model runs faster in both
cases, especially in backward optimization.

Forward (s) Backward (min)

OFlow [19] 1.106 (0.814) 17.600
4D-CR [5] 14.469 (5.861) 14.117
4D-CR-SMPL [5] 0.209 16.817
Ours 0.175 7.303

Table 3. Comparisons about the run-time. We show per se-
quence run-time of our method and baselines on forward inference
and backward optimization. The numbers in the parentheses mean
time without Marching Cubes.

7. Limitations and Future work

We now discuss a few limitations of our approach that
point to future work. First, our motion model can recon-
struct the discretized frame w.r.t each input time step, but
not the arbitrary time in the continuous whole time span like
4D-CR [5] or OFlow [19], which will be useful in some sce-
narios requesting higher temporal resolution from inputs.
Incorporating a network that takes a time value scalar as
input, e.g. Neural ODE [3], temporal MLP, would be a so-
lution. Second, we currently conduct all experiments on
the sequences of 3D data, e.g. point clouds or meshes. On
the one hand, this is due to the lack of 4D human datasets
with color images, e.g. pairs of video and 3D human se-
quences (with clothing and hair). And on the other hand,
the focus of this work is to propose a compositional repre-
sentation and effectively power various 4D human-related
applications based on point cloud. Combining our repre-
sentation with techniques such as neural rendering [13, 18]
or photometric-based optimization [12,14] for image-based
full human 4D reconstruction would be a promising future
direction. Third, we adopt the same clothing representation
used in previous work [1,11,15], i.e. per-vertex offsets upon
the body in the canonical pose, and extend it to apply to
temporal sequences. However, as discussed in CAPE [15],
some loose garments such as skirts and coats are difficult
to represent with offsets due to the limited capacity. Mod-
eling clothes and hair as separate layers on the body with
meshes or implicit surface is a feasible way, and we leave
it to future work. Forth, since we have a compact motion
representation that uses one single motion code to provide
global control upon the whole sequence, future works also
include high-level inference applications such as using the
motion code learned in an unsupervised fashion to perform
action classification with a simple linear classifier.

8. Broader Impact and Social Impact

Learning a compact representation for 3D data is a
widely interested problem. However, less attention has fo-
cused on the 4D cases, though it is important for various ap-
plications to understand time-varying objects, e.g. Robotics,
VR/AR. This work focuses on 4D human modeling and pro-
poses H4D, a compact and compositional representation,
which uses low-dimensional SMPL parameters and latent
codes to encode key factors of dynamic humans. We make
some attempts and demonstrate our representation has rich
capacity and is amenable to many applications. We hope
these explorations could provide insights for future research
directions. For instance, using our representation for video-
based full human reconstruction; exploiting the composi-
tional property to control the outputs for generative tasks;
and improving the 4D human representation and make up
for the discussed limitations of our method. Broadly, our



approach can serve as an important core tech in achieving
the Metaverse. It may enable everyone to produce their own
Avatar with their motions, potentially benefiting the Social
Welfare.
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Figure 3. Qualitative comparisons to HuMoR. We compare the reconstruction results with HuMoR by using Chamfer loss (HuMoR,
Ours) and 3D keypoint loss (HuMoR∗, Ours∗) for auto-decoding. Our method produces more accurate SMPL sequences in both cases.
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Figure 4. Qualitative comparisons to NPMs on depth completion task. We use the partial point clouds back-projected from the depth
images rendered by rotating a camera around the performer as observation, and reconstruct the motion sequence with complete geometry.
We use the random vectors sampled from a Gaussian distribution N (0, 0.01) to initialize the codes for NPMs∗ and Ours, and use the
pretrained encoders to obtain initialization for NPMs.
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Figure 5. Visualization of principal components (1). PC0 and PC4 is the first principal component of global rotation and other body joint
rotations respectively. The number before each row is the scaling factor for the corresponding component (multiply it with the eigenvector
and show the result motion).
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Figure 6. Visualization of principal components (2). Here are three principal components of body joint rotations, which in general
control the movements of forearms (PC6), the bending of the legs (PC7), and motion similar to running (PC9) respectively.
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Figure 7. 4D Reconstruction. Our method produces accurate motion sequence with fine-grained geometry (blazer, long trousers and
hairstyle), while the results of baseline methods suffer from incomplete geometry with missing arms or hands, and are overly smooth.
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Figure 8. Future Prediction. Here are two different sequences on the future prediction task (split by solid line). Each sequence has
L = 30 frames and we are aiming to extrapolate 10 future temporal frames based on 20 past observed frames. The meshes on the left of
dotted line are reconstruction results of the observations, and the meshes on the right are the predictions for future time steps.
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Figure 9. Shape and Motion Recovery. Different from the 4D reconstruction task, the goal here is to recover accurate SMPL motion
sequence from the input point cloud sequence. We uniformly sample 5 frames (out of 30 frames) for visualization. Our model in general
performs best among all the methods.



OFlow

4D-CR

4D-CR-
SMPL

Ours

GT

Time

HMMR

Figure 10. Temporal Completion. Given a sequence of L = 30 frames, we randomly select 15 frames as observation and perform
the backward fitting algorithm to optimize the SMPL parameters and latent codes, and then reconstruct the full sequence to complete
the missing frames. The meshes with yellow-red-ish color are completed unseen frames. We find 4D-CR-SMPL and HMMR produce
unnatural pose results while our method successfully reconstructs and completes the full motion sequence, possibly because our linear
motion model provides regularization and global temporal context for the output motion.
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Figure 11. Temporal Completion. The meshes with yellow-red-ish color are completed unseen frames.
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Figure 12. Spatial Completion. We use the partial point clouds back-projected from the depth images as observation, and reconstruct the
motion sequence with complete geometry. Note that the depth images are rendered from the raw scanned mesh sequence of CAPE dataset,
which simulates the real-world scenarios.
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Figure 13. Motion Retargeting. Our goal is to transfer the human
movements of the motion sequence (Row 1) to the people in the
identity sequence (Row 2).
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Figure 14. Ablation Study.
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