
Appendix for Uni6D: A Unified CNN Framework without Projection Breakdown
for 6D Pose Estimation

1. Implementation details
1.1. The details of the positional encoding.

PE is implemented using equation 1 and the details will
be added in the final version.

PE(x, y, 2i) = sin(x/10000(4i/D))

PE(x, y, 2i+ 1) = cos(x/10000(4i/D))

PE(x, y, 2j +D/2) = sin(y/10000(4j/D))

PE(x, y, 2j + 1 +D/2) = cos(y/10000(4j/D)),

(1)

where (x, y) is a point in 2d space, i, j is an integer in
[0, D/4), D is the size of the channel dimension.

1.2. The details of the pre-trained weight.

We use the ImageNet pre-trained weight, and the first
convolutional layer is initialized with the kaiming uniform.
For YCB dataset:

• Backbone: ResNet50 + FPN;

• Input data: RGB-D+UV+PE+XY+NRM, rotation ma-
trices are represented by quaternions, other settings are
same with PVN3D [1];

• Data augmentation:

1. multi-scale training: [320, 400, 480, 600, 720]
(max size is 900);

2. background replacing: replace the background
of the rendered data with the real image back-
ground;

3. random crop: 0.3 probability, need to keep all
objects;

• Training:

1. Pretrained: ImageNet;

2. Schedule: 40epoch, MultiStepLR with [15, 25,
35] schedule and 0.1× decay ;

3. Optimizer: SGD, momentum 0.9, weight deacy
0.0001, warm-up 4 epoch;

• Loss function:

1. Loss = αAddloss + RPNloss + bboxloss +
clsloss+maskloss+ abcheadloss;

2. α is changed in training: 1-15 epoch is 1, 16-25
epoch is 5, 26-35 epoch is 10 and 36-40 epoch is
20;

For Linemode dataset:

• Backbone: ResNet50 + FPN;

• Input data: RGB-D+UV+PE+XY+NRM, rotation ma-
trices are represented by quaternions, other settings are
same with PVN3D [1], except using camera intrinsics
for real data to render data;

• Data augmentation:

1. multi-scale training: [320, 400, 480, 600, 720]
(max size is 900);

2. background replacing: replace the background
of the rendered data with the real image back-
ground;

3. random crop: 0.3 probability, need to keep all
objects;

4. random erase: 0.1 probability

• Training:

1. Pretrained: ImageNet;

2. Schedule: 40epoch, MultiStepLR with [15, 25,
35] schedule and 0.1× decay ;

3. Optimizer: SGD, momentum 0.9, weight deacy
0.0001, warm-up 4 epoch;

• Loss function:

1. Loss = αAddloss + RPNloss + bboxloss +
clsloss+maskloss+ abcheadloss;

2. α is changed in training: 1-15 epoch is 1, 16-25
epoch is 5, 26-35 epoch is 10 and 36-40 epoch is
20;
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2. Ablation Studies of abc Head
We provide results of more ablation studies for abc head

on YCB dataset in Table 1. We combine the abc head with
different UV input information to verify the effectiveness of
it. We can observe that our abc head can improve the per-
formance without UV and it can further improve the per-
formance with different types of UV. These results demon-
strate the effectiveness of abc head as an auxiliary training
task.

RGB-D Plain UV XY PE NRM
w/o 90.99/79.72 94.06/85.39 94.17/85.66 93.54/85.05 93.79/84.79
w 91.13/80.89 94.49/86.46 94.33/86.90 93.53/86.09 93.89/84.96

Table 1. Ablation study results of abc head, the format is
ADDS/ADD(S).

3. Quantitative Results on the LineMOD
Dataset

Experimental results of LineMOD dataset are reported
in Table 2, our approach achieves 97.03% ADD-0.1d ACC
with a succinct and straightforward pipeline compared with
other methods. LineMOD is usually thought to be less chal-
lenging due to the varying lighting conditions, significant
image noise and occlusions in YCB-Video Dataset.

4. Quantitative Results on the Occlusion
LineMOD dataset

We follow the previous works [7,9] to train our model on
the LineMOD dataset and only use this dataset for testing.
Experimental results of LineMOD dataset are reported in
Table 3, and we obtain 30.71 ADDS-0.1d AUC.

5. More Qualitative Results
We give more qualitative comparison results between our

method and the SOTA method FFB6D [9] in Fig. 1 for
YCB-Video dataset and Fig. 2 for LineMOD dataset. More-
over, We strongly recommend readers to watch the video
from https://youtu.be/6G P282djw , which directly re-
flects the comparison results between our method and
the FFB6D [9]. Compared with FFB6D, our method esti-
mates the 6d pose more smoothly. Our method has better
consistency between adjacent frames, less jitter, and more
robust performance under severe occlusion conditions.
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Table 2. Evaluation results (ADD-0.1d ACC) on the LineMOD dataset. Symmetric objects are denoted in bold.

PoseCNN [2] PVNet [3] CDPN [4] DOPD [5] PointFusion [6] DenseFusion [7] G2L-Net [8] PVN3D [1] FFB6D [9] Our Uni6D

ape 77.0 43.6 64.4 87.7 70.4 92.3 96.8 97.3 98.4 93.71
benchvise 97.5 99.9 97.8 98.5 80.7 93.2 96.1 99.7 100.0 99.81
camera 93.5 86.9 91.7 96.1 60.8 94.4 98.2 99.6 99.9 95.98
can 96.5 95.5 95.9 99.7 61.1 93.1 98.0 99.5 99.8 99.02
cat 82.1 79.3 83.8 94.7 79.1 96.5 99.2 99.8 99.9 98.10
driller 95.0 96.4 96.2 98.8 47.3 87.0 99.8 99.3 100.0 99.11
duck 77.7 52.6 66.8 86.3 63.0 92.3 97.7 98.2 98.4 89.95
eggbox 97.1 99.2 99.7 99.9 99.9 99.8 100.0 99.8 100.0 100.00
glue 99.4 95.7 99.6 96.8 99.3 100.0 100.0 100.0 100.0 99.23
holepuncher 52.8 82.0 85.8 86.9 71.8 92.1 99.0 99.9 99.8 90.20
iron 98.3 98.9 97.9 100.0 83.2 97.0 99.3 99.7 99.9 99.49
lamp 97.5 99.3 97.9 96.8 62.3 95.3 99.5 99.8 99.9 99.42
phone 87.7 92.4 90.8 94.7 78.8 92.8 98.9 99.5 99.7 97.41
Avg 88.6 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7 97.03

Table 3. Evaluation results (ADD-0.1d ACC) on the Occlusion-LineMOD dataset. Symmetric objects are denoted in bold.

Method PoseCNN [2] Oberweger [10] Pix2Pose [11] PVNet [3] DPOD [5] Hu [12] HybridPose [13] PVN3D [1] FFB6D [9] Our Uni6D

ape 9.6 12.1 22.0 15.8 - 19.2 20.9 33.9 47.2 32.99
can 45.2 39.9 44.7 63.3 - 65.1 75.3 88.6 85.2 51.04
cat 0.9 8.2 22.7 16.7 - 18.9 24.9 39.1 45.7 4.56
driller 41.4 45.2 44.7 65.7 - 69.0 70.2 78.4 81.4 58.40
duck 19.6 17.2 15.0 25.2 - 25.3 27.9 41.9 53.9 34.80
eggbox 22.0 22.1 25.2 50.2 - 52.0 52.4 80.9 70.2 1.73
glue 38.5 35.8 32.4 49.6 - 51.4 53.8 68.1 60.1 30.16
holepuncher 22.1 36.0 49.5 39.7 - 45.6 54.2 74.7 85.9 32.07
Avg 24.9 27.0 32.0 40.8 47.3 43.3 47.5 63.2 66.2 30.71

Figure 1. Qualitative results of 6D pose on the YCB-Video dataset. In each sub-figure, left is the result of our method and the right is of
the SOTA method FFB6D [9].



Ape Benchvise

Cam Can

Figure 2. Qualitative results of 6D pose on the LineMOD dataset.
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