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1. Detailed Network Structures of GI-ReID
GI-ReID, as a image-based cloth-changing ReID frame-

work, with gait information as assistance, consists of
an auxiliary Gait-Stream and a mainstream ReID-Stream.
ReID-Stream can be arbitrary commonly-used network ar-
chitectures, such as ResNet [6], and also can be some
ReID-specific network architectures, such as PCB [23],
OSNet [33]. Thus, in this section, we mainly intro-
duce/describe the detailed network architecture of Gait-
Stream which contains two key parts, GSP module for gait
information prediction/augmentation and GaitSet [2] for
gait features extraction.

Architecture of Gait Sequence Prediction (GSP)
Module: The proposed GSP module consists of a feature
encoder E, a decoder D, a position embedder P , and a fea-
ture aggregator A.
(1). Encoder E. The encoder E is a CNN with four Conv.
layers (filter size = 4 × 4 and stride = 2). The number of
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Figure 1. We apply “resize+zero padding” in the person masks
(right) when fine-tuning GSP module on the ReID-specific
datasets, because the raw gait training data (left) typically have
the height-width ratio of (1:1), which is important/necessary for
training GSP to get satisfactory gait prediction results.

filters is increased from 64 → 512. Each Conv. layer is
followed by a batch-normalization (BN) layer [9] and a rec-
tified linear unit (ReLU) activation function [18]. In the
end, a 100-dimensional feature is obtained through a fully
connected (FC) layer.

Note that, when pre-training GSP module on the gait-
specific datasets following [2], the input gait silhouette of
encoder E has a size of 1 × 64 × 64 (height-width ratio is
1:1). We use CASIA-B [2] as training dataset. On the ReID-
specific datasets, since the input person images usually have
a height-width ratio of 2:1 (e.g., height-256, width-128),
we need leverage an operation of “resize+zero padding” to
handle such training data gap, which is pivotal for GSP’s
accurate gait sequence prediction. For better understanding,
we vividly visualize such process in Figure 1.
(2). Position Embedder P and Feature Aggregator A. To
reduce the gait prediction ambiguity and difficulty of GSP,
a position embedder P and a feature aggregator A are in-
troduced to integrate the prior information of input middle
frame index into the prediction process of GSP. The position
embedder P has a similar structure to that of the encoder E,
but with one more FC layer to regress the 1D position label
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p̃. The feature aggregator A is inserted between the encoder
and the decoder to convert the raw encoded features fS into
middle-position-aware features f p̃

S by taking the embedded
middle position information p̃ into account. With respect to
the architecture of A, it is implemented only by a FC layer,
which aims to regress to the aggregated 100-dimension fea-
ture f p̃

S ∈ R100 from the 101-dimension concatenated vec-
tor of the raw encoded feature fS ∈ R100 and the embedded
middle position prior vector p̃ ∈ R1.
(3). Decoder D. The structure of the decoder D is sym-
metrical to that of the encoder E. A FC layer along with re-
shaping is first employed to convert the input 100D feature
into the same size as the last feature output of the encoder
E, and then four DeConv. layers are used for up-sampling.
A sigmoid activation function is applied in the end, and out-
puts the gait predictions with a size of N × 64× 64, where
each channel indicates a predicted gait frame of final results.

Architecture of GaitSet: GaitSet [2] is a classic set-
based gait recognition network, which takes a set of sil-
houettes/gait frames as input. After obtaining features from
each input silhouette independently using a CNN, set pool-
ing is applied to merge features over frames into a set-level
feature. This set-level feature is then used for discrim-
ination learning via horizontal pyramid mapping (HPM),
which aims to extract features of different spatial locations
on different scales. We recommend seeing more details
from their original paper [2].

2. Training Details of our GI-ReID
Phase-1: Pre-training for GaitSet. The input is a set of
aligned silhouettes in size of 64 × 44. The silhouettes are
directly provided by the datasets and are aligned based on
methods in [24]. The set cardinality in the training is set
to be 30. Adam is chosen as an optimizer. The number of
scales S in HPM is set as 5. The margin in separate triplet
loss Lsep

tri [2] is set as 0.2. The mini-batch is composed of
P = 16 and N = 8 (P,N respectively mean the number of
person identities and input gait frames). We set the number
of channels in C1 and C2 as 32, in C3 and C4 as 64 and in
C5 and C6 as 128 (following [2]). The learning rate is set
to be 1×10−4, and the model is trained for 80 epochs.
Phase-2: Joint Training for GSP module and GaitSet.
After pre-training GaitSet, we jointly train the proposed gait
sequence prediction (GSP) module and GaitSet for Gait-
Stream. Specifically, during the joint-training, we also re-
use CASIA-B dataset for effective gait prediction training.
Following [7], a batch is formed by first randomly sampling
P identities. For each identity, we sample N continuous
gait frames as the ground-truth gait sequence. Then the
batch size is B = P × N . We set P = 4 and N = 8 (i.e.,
batch size B = P × N = 32. As presented in the main
manuscript, we use the middle one of the ground-truth gait
sequence (i.e., the fourth one when N = 8) as input for GSP

training. We first optimize GSP with the proposed position
loss Lposition and prediction loss Lpred (loss balance is set
as 1:1) for 80 epochs, which enables GSP to output rea-
sonable predicted gait sequence results. We train GSP with
Adam optimizer [11] with a initial learning rate of 5×10−4.
We optimize the Adam optimizer with a weight decay of
1×10−4. The learning rate is decayed by a factor of 0.1 at
40 epoch.

Algorithm 1 Training Process of GI-ReID
1: Input: gait dataset G (e.g., CASIA-B [2]), ReID dataset R (e.g.,

LTCC [21]). Learning rate is simply denoted as η. The entire GI-
ReID framework consists of GSP module GSPθ , GaitSet (GS) GSϕ,
SC constraints related FC layers SCψ , and ReID-Stream backbone
ReIDω .

2: Output: inference ReID vector r.
3: ### Phase-1: Pre-training for GaitSet
4: for epoch = 1 to 80 do
5: Sample P ×N = 16× 8 samples from gait training set G.
6: Ltotal = Lseptri // Use the separate triplet loss as objective

function [2].
7: ϕ = ϕ− η∇ϕLseptri // Update GaitSet (GS) GSϕ.
8: end for
9: ### Phase-2: Joint Training for GSP module and GaitSet

10: for epoch = 1 to 80 do
11: Sample P ×N = 4× 8 samples from gait training set G.
12: Ltotal = Lposition + Lpred // Use the proposed position loss

and prediction loss as objective functions.
13: θ = θ − η∇θLtotal // Warm up GSP module GSPθ .
14: end for
15: for epoch = 1 to 160 do
16: Sample P ×N = 4× 8 samples from gait training set G.
17: Ltotal = Lposition + Lpred + Lseptri // Use the position loss,

prediction loss , and separate triplet loss as objective functions.
18: (θ, ϕ) = (θ, ϕ)− η∇(θ,ϕ)Ltotal // Jointly update GSP module

GSPθ and GaitSet (GS) GSϕ.
19: end for
20: ### Phase-3: Joint Training for Gait-Stream and ReID-Stream
21: for epoch = 1 to 240 do
22: Sample P ×N = 10× 8 samples from ReID training set R.
23: Ltotal = 0.1 ∗Lposition+0.1 ∗Lpred+0.1 ∗Lseptri +Lcla+

LHMtri + 0.5 ∗ LMMD + 0.5 ∗ Lrecon. //
Total objective functions consists of the position loss, prediction
loss, separate triplet loss (for Gait-Stream), and the classification
loss, triplet loss (with hard-mining, HM) (for ReID-Stream), and
the MMD loss, reconstruction loss (SC constraints).

24: (θ, ϕ, ψ, ω) = (θ, ϕ, ψ, ω)−η∇(θ,ϕ,ψ,ω)Ltotal // Jointly update
GSP moduleGSPθ , GaitSet (GS)GSϕ, SC constraints related FC
embedding layers SCψ , and ReID-Stream backbone ReIDω .

25: end for

After warming up the GSP module for 80 epochs, we
jointly train GSP and GaitSet for extra 160 epochs with
initial learning rate as 5×10−4. We also use Adam opti-
mizer [11] for optimization with a weight decay of 1×10−4,
the learning rate is decayed by a factor of 0.5 at 40, 80, and
120 epochs. When jointly training GSP and GaitSet, ex-
cluding the GSP-related position loss Lposition and predic-
tion loss Lpred, we further use separate triplet loss Lsep

tri for
training, which is introduced in details in GaitSet [2], and
we also set the loss weight as 1.0 for this supervision.



Phase-3: Joint Training for Gait-Stream and ReID-
Stream. When we jointly training Gait-Stream and ReID-
Stream on the ReID datasets, Gait-Stream is also fine-
tuned/learnable. Since the full gait sequence ground truth
are not available for ReID-specific datasets, we adjust the
original prediction loss Lpred in GSP by only calculating
L1 distance between the single input person mask and the
middle frame result of the entire predicted gait sequence.

On the large-scale cloth-changing datasets VC-
Clothes [25], LTCC [21], and PRCC [29], we set training
batch size as B = 80 = P × N = 10 × 8. Both of
Gait-Stream (including GSP and GaitSet) and ReID-Stream
use Adam optimizer [11] for optimization, where the initial
learning rate for Gait-Stream is 1×10−5, for ReID-Stream
is 5×10−4. We optimize two Adam optimizers for Gait-
Stream and ReID-Stream with a weight decay of 1×10−5

for total 240 epochs. The learning rate is decayed by a fac-
tor of 0.1 at 80 and 160 epochs for ReID-Stream, while no
learning rate decay for Gait-Stream. For the losses usage,
we adopt the widely-adopted classification loss Lcla [5,23],
and triplet loss with batch hard mining LHM

tri [7]) as basic
optimization objectives for ReID-Stream training, and we
set these two loss weights as 1.0. Besides, for the Gait-
Stream related losses, including Lposition,Lpred,Lsep

tri ,
we set all their loss weights as 0.1. For the semantics
consistency (SC) constraints related FC embedding layers,
we merge their learnable parameters into ReID-Stream’s
optimization, and set the balance weights for MMD loss
LMMD and reconstruction penalty Lrecon. as 0.5. The
pseudo code of the entire training process of our GI-ReID
is given in Algorithm 1.

3. Details of Datasets

We use one widely-used video ReID dataset MARS [32],
and four image-based cloth-changing ReID datasets
Real28 [25], VC-Clothes [25], LTCC [21], PRCC [29] to
perform experiments. In Table 1, we present the detailed
information about these ReID datasets.

Table 1. Brief introduction/comparison of datasets.

MARS Real28 VC-Clothes LTCC PRCC
Category Video Image Image Image Image

Photo Style Real Real Synthetic Real Real
Scale Large Small Large Large Large

Cloth Change No Yes Yes Yes Yes
Identities 1,261 28 512 152 221
Samples 20,715 4,324 19,060 17,138 33,698
Cameras 6 4 4 N/A 3

Usage Train&Test Test Train&Test Train&Test Train&Test

MARS is a popular dataset for video-based person ReID.
There are 20,715 track-lets come from 1,261 pedestrians
who are captured by at least 2 cameras. We use the train/test
split protocol defined in [32].

Real28, VC-Clothes, LTCC and PRCC are all newly re-
leased image datasets for cloth-changing ReID [21, 25, 29].

Real28 is a small real-scenario dataset, which is col-
lected in 3 different days (with different clothing) by 4 cam-
eras. It consists of totally 4,324 images from 28 differ-
ent identities with 2 indoor scenes and 2 outdoors. Simi-
lar to [25], since the size of Real28 is not big enough for
training deep learning models, we just use it for evaluation.
There are totally 336 images in the query and 3,988 images
in the gallery.

VC-Clothes is a synthetic dataset where images are ren-
dered by the Grand Theft Auto V (GTA5). It has 512 identi-
ties, 4 scenes (cameras) and on average 9 images/scenes for
each identity and a total number of 19,060 images. Follow-
ing [25], we equally split the dataset by identities: 256 iden-
tities for training and the other 256 for testing. We randomly
chose 4 images per person from each camera as query, and
have the other images serve as gallery images. Eventually,
we get totally 9,449 images in the training, 1,020 images as
queries and 8,591 others in the gallery.

LTCC is a large-scale real-scenario cloth-changing
dataset, which contains 17,138 person images of 152 iden-
tities. On average, there are 5 different clothes for each
cloth-changing person, with the numbers of outfit changes
ranging from 2 to 14. Following [21], we split the LTCC
dataset into training and testing sets. The training set con-
sists of 77 identities, where 46 people have cloth changes
and the rest of 31 people wear the same outfits during the
recording. Similarly, the testing set contains 45 people with
changing clothes and 30 people wearing the same outfits.

PRCC is also a large-scale real-scenario cloth-
changing dataset, recently published by Yang et al. [29]. It
consists of 221 identities with three camera views Camera
A, Camera B, and Camera C. Each person in Cameras A and
B is wearing the same clothes, but the images are captured
in different rooms. For Camera C, the person wears differ-
ent clothes, and the images are captured in a different day.
The images in the PRCC dataset include not only clothing
changes for the same person across different camera views
but also other variations, e.g. changes in illumination, oc-
clusion, pose and viewpoint. In summary, nearly 50 images
exists for each person in each camera view. Therefore, ap-
proximately 152 images of each person are included in the
dataset, for 33,698 images in total.

Following [29], we split the PRCC dataset into a training
set and a testing set. The training set consists of 150 peo-
ple, and the testing set consists of 71 people, with no overlap
between them in terms of identities. The testing set was fur-
ther divided into a gallery set and a probe set. For each iden-
tity in the testing set, we chose one image in Camera view
A to form the gallery set for a single-shot matching. All im-
ages in Camera views B and Camera C were used for the
probe set. Specifically, the person matching between Cam-



era views A and B was performed without clothing changes,
whereas the matching between Camera views A and C was
cross-clothes matching. The results were assessed in terms
of the cumulated matching characteristics, specifically, the
Rank-1, Rank-10, and Rank-20 matching accuracy.

4. Experimental Results of Different Settings

Experimental Setups. As we described in the main
manuscript, we build three kinds of different experiment
settings to comprehensively validate the effectiveness of
gait biometric for person ReID, and also validate the ratio-
nality/superiority of the proposed gait prediction and reg-
ularization in our GI-ReID framework: (1) Real Cloth-
Changing Image ReID, (2) General Video ReID, (3) Imi-
tated Cloth-Changing Video ReID. In the main manuscripts,
we have presented all the results related to the most chal-
lenging setting of (1) real cloth-changing image ReID. The
rest results about (2)(3) are shown here. Baseline means the
model that only ingests RGB images.
2) General Video ReID. In this setting, we use a general
video ReID dataset MARS for experiments. This dataset
has no cloth-changing cases. This group of experiments
aims to verify two things: 1) gait could benefit ReID even
without clothes variations. 2) extracting gait feature from
video is easier than that from image, or said, exploiting gait
feature in the image-based CC-ReID is more challenging.
Since MARS itself contains continuous video frames/clips
and human gait masks 1, we don’t need GSP to additionally
predict gait sequence, so we discard it for simplicity.
3) Imitated Cloth-Changing Video ReID. We still use
MARS as dataset to perform experiments in this setting.
But the difference is that we imitate cloth-changing cases
for the images with the same identity through a data aug-
mentation strategy—body-wise color jitter (i.e., randomly
change the brightness, contrast and saturation of the human
body region in an person image) for training. This group
of experiments aims to show that gait information could al-
leviate the ReID interference caused by clothes changing.
GSP module is also removed in this setting.
Results of General Video ReID. Table 2 shows the results.
We observe that: 1) Thanks to the leverage of gait charac-
teristics through the proposed Gait-Stream (GS), Baseline
+ GS (concat) and Baseline + GS + SC outperform Base-
line by 1.07%/1.29% in mAP respectively, which demon-
strates that gait information indeed benefits ReID. 2) We
find that Baseline + GS + SC further outperforms Baseline
+ GS (concat) by 0.22% in mAP. This result validates the
superiority of our gait utilization manner (i.e., regulariza-
tion), which makes ReID-Stream not only robust to the gait
estimation error, but also computationally efficient (Gait-
Stream is not needed in the inference).

1https://pan.baidu.com/s/16ZrlM1f 1 T-eZHmQTTkYg.

Table 2. Performance (%) comparison on the general video ReID
dataset MARS [32]. GS refers to Gait-Stream and SC refers to
semantics consistency constraints. Note that ‘concat’ means con-
catenating ReID vector r and gait vector g together for ReID. The
backbone is ResNet-50.

Methods
MARS

mAP Rank-1

Baseline 79.12 87.34
Baseline + GS (concat) 80.19 88.16

Baseline + GS + SC (ours) 80.41 88.32

Results of Imitated Cloth-Changing Video ReID. To
prove that gait indeed could alleviate clothes variation is-
sue, we imitate cloth-changing cases for MARS (denoted
as CC-MARS). In Table 3, we observe that 1) Disturbed by
the synthetic clothing change, Baseline suffers from large
degradation, 68.52% on CC-MARS vs. 79.12% on raw
MARS in mAP. 2) With the assistance of gait, Baseline+GS
(concat) and Baseline+GS+SC improve Baseline near 5.0%
in mAP. 3) On CC-MARS, the gait ‘concat’ scheme shows
a little superiority than ours. We analyse that’s because the
‘concat’ could help ReID more explicitly, especially when
meeting changing clothes. But, the ‘concat’ scheme needs
maintain Gait-Stream in the inference, leading extra com-
putational cost. 4) As video ReID datasets, it is relatively
easy to extract gait features on MARS/CC-MARS.

Table 3. Performance (%) comparison on the imitated (using color
jitter) cloth-changing video ReID dataset, termed as CC-MARS.
The ReID backbone is ResNet-50.

Methods
CC-MARS

mAP Rank-1

Baseline 68.52 72.31
Baseline + GS (concat) 73.46 79.34

Baseline + GS + SC (ours) 73.13 79.15

5. Comparison with State-of-the-Arts (Com-
plete version)

To save space, we only present the latest approaches in
the main manuscripts, and here we show comparisons with
more approaches and more evaluation settings on LTCC
(Table 4) and PRCC datasets (Table 5).

From the comparison results on PRCC that are shown
in Table 5, we observe that 1) Although person ReID with
no clothing change (i.e.“Same Clothes” in the Table 5) is
not the purpose in our work, our method GI-ReID can still
achieve an accuracy of 85.97% in Rank-1, which is better
than that of all hand-crafted features with metric learning
methods and most deep learning methods. 2) When the
input images are RGB images without clothing changes,
Alexnet [14], VGG16 [22], HA-CNN [15], and PCB [23]
all achieve good performance, but they have a sharp per-



Table 4. Performance (%) comparisons of our GI-ReID and other competitors on the cloth-changing dataset LTCC [21]. ‘Standard’ and
‘Cloth-changing’ respectively mean the standard setting and cloth-changing setting as mentioned in our main manuscript. ‘(Image)’ or
‘(Parsing)’ represents that the input data is the person image or the body parsing image. ‘†’ means the setting that only identities with
clothes changing are used for training.

Methods
Standard Cloth-changing Standard† Cloth-changing†

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
LOMO [16] + KISSME [12] 26.57 9.11 10.75 5.25 19.47 7.37 8.32 4.37
LOMO [16] + XQDA [16] 25.35 9.54 10.95 5.56 22.52 8.21 10.55 4.95
LOMO [16] + NullSpace [31] 34.83 11.92 16.45 6.29 27.59 9.43 13.37 5.34
ResNet-50 (Image) [6] 58.82 25.98 20.08 9.02 57.20 22.82 20.68 8.38
ResNet-50 (Parsing) [6] 19.87 6.64 7.51 3.75 18.86 6.16 6.28 3.46
PCB (Parsing) [23] 27.38 9.16 9.33 4.50 25.96 7.77 10.54 4.04
ResNet-50 + Face [28] 60.44 25.42 22.10 9.44 55.37 22.23 20.68 8.99
PCB [23] 65.11 30.60 23.52 10.03 59.22 26.61 21.93 8.81
HACNN [15] 60.24 26.71 21.59 9.25 57.12 23.48 20.81 8.27
MuDeep [20] 61.86 27.52 23.53 10.23 56.99 24.10 18.66 8.76
Face [28] 60.44 25.42 22.10 9.44 55.37 22.23 20.68 8.99
Baseline (ResNet-50) 55.14 23.21 19.58 8.10 54.27 21.98 19.14 7.74
GI-ReID (ResNet-50, ours) 63.21 29.44 23.72 10.38 61.39 27.88 22.59 9.87
Baseline (OSNet) 66.07 31.18 23.43 10.56 61.22 27.41 22.97 9.74
GI-ReID (OSNet, ours) 73.59 36.07 28.11 13.17 66.94 33.04 26.71 12.69
Baseline (LTCC-shape [21]) – – 26.15 12.40 – – 25.15 11.67
LTCC-shape + Gait-Stream (ours) – – 28.86 14.19 – – 26.41 13.26

Table 5. Performance (%) comparisons of our GI-ReID and other competitors on the cloth-changing dataset PRCC [29]. “RGB” means
the inputs of the model are RGB images; “Sketch” means the inputs of the model are contour sketch images

Methods Cameras A and C (Cross-Clothes) Cameras A and B (Same Clothes)
Rank-1 Rank-10 Rank-20 Rank-1 Rank-10 Rank-20

LBP [19] + KISSME [13] 18.71 58.09 71.40 39.03 76.18 86.91
HOG [4] + KISSME [13] 17.52 49.52 63.55 36.02 68.83 80.49
LBP [19] + HOG [4] + KISSME [13] 17.66 54.07 67.85 47.73 81.88 90.54
LOMO [17] + KISSME [13] 18.55 49.81 67.27 47.40 81.42 90.38
LBP [19] + XQDA [17] 18.25 52.75 61.98 40.66 77.74 87.44
HOG [4] + XQDA [17] 22.11 57.33 69.93 42.32 75.63 85.38
LBP [19] + HOG [4] + XQDA [17] 23.71 62.04 74.49 54.16 84.11 91.21
LOMO [17] + XQDA [17] 14.53 43.63 60.34 29.41 67.24 80.52
Shape [1] 11.48 38.66 53.21 23.87 68.41 76.32
LNSCT [27] 15.33 53.87 67.12 35.54 69.56 82.37
Alexnet [14] (RGB) 16.33 48.01 65.87 63.28 91.70 94.73
VGG16 [22] (RGB) 18.21 46.13 60.76 71.39 95.89 98.68
HA-CNN [15] (RGB) 21.81 59.47 67.45 82.45 98.12 99.04
PCB [23] (RGB) 22.86 61.24 78.27 86.88 98.79 99.62
Alexnet [14] (Sketch) 14.94 57.68 75.40 38.00 82.15 91.91
VGG16 [22] (Sketch) 18.79 66.01 81.27 54.00 91.33 96.73
HA-CNN [15] (Sketch) 20.45 63.87 79.58 58.63 90.45 95.78
PCB [23] (Sketch) 22.48 61.07 77.05 57.36 92.12 96.72
SketchNet [30] (Sketch+RGB) 17.89 43.70 58.62 64.56 95.09 97.84
Face [26] 2.97 9.85 13.52 4.75 13.40 45.54
Deformable Conv. [3] 25.98 71.67 85.31 61.87 92.13 97.65
STN [10] 27.47 69.53 83.22 59.21 91.43 96.11
RCSANet [8] 31.60 – – – – –
PRCC-contour [29] 34.38 77.30 88.05 64.20 92.62 96.65
+ Gait-Stream (ours) 36.19 79.93 91,67 – – –
Baseline (ResNet-50) 22.23 61.08 76.44 75.81 97.34 98.95
GI-ReID (ResNet-50) 33.26 75.09 87.44 78.95 97.89 99.11
Baseline (OSNet) 28.70 72.34 85.89 83.68 98.24 99.26
GI-ReID (OSNet) 37.55 82.25 93.76 85.97 98.82 99.72



formance drop when a clothing change occurs, illustrating
the challenge of person ReID when a person dresses differ-
ently. Therefore, the application of existing person ReID
methods is not straightforward in this scenario. In con-
trast, our GI-ReID that leverages gait information is benefi-
cial to learn the clothing invariant feature, which makes our
method achieve satisfactory performance 37.55% in Rank-1
even under the cloth-changing scenario.

6. Study on Failure Cases (Limitations)

As we described in the main manuscript, since the ex-
isted large difference on the capture viewpoint and environ-
ment between gait and ReID training data, the predicted re-
sults of gait sequence prediction (GSP) module are not so
accurate when occlusion, partial, multi-person, etc, existed
in the person images. As shown in Figure 2, GSP gives
unsatisfactory gait prediction results, where large estima-
tion errors exist in the predicted gait frames, which will hurt
the ReID performance. That is why we indirectly use gait
prediction results in a two-stream knowledge regularization
manner, which makes our GI-ReID robust/less sensitive to
these failure cases.

Figure 2. Failure cases of gait sequence prediction (GSP).

7. Social Impact

Positive. In this paper, we propose to utilize human unique
gait to address the cloth-changing ReID (CC-ReID) prob-
lem from a single image. A novel gait-involved two-stream
framework GI-ReID is introduced for image-based CC-
ReID. To our best knowledge, this paper is the first attempt
to take gait as a regulator with a Gait-Stream (discarded in
the inference), to encourage the cloth-agnostic representa-
tion learning of image-based ReID-Stream. This is very im-
portant for both of academic community and industry, and
it is also valuable and meaningful to bridge the gap between

the fast-developing ReID algorithms and practical applica-
tions.
Negative. Due to the urgent demand of public safety and
increasing number of surveillance cameras, person ReID is
imperative in intelligent surveillance systems with signifi-
cant research impact and practical importance, but this task
also might raise questions about the risk of leaking private
information. On the other hand, the data collected from the
surveillance equipments or downloaded from the internet
may violate the privacy of human beings. Therefore, we ap-
peal and encourage research that understands and mitigates
the risks arising from surveillance applications.
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