
Appendix A. Implementation Details

Appendix A.1. Scene Flow Annotation

Scene flow annotation strategies are different for three
real-world datasets (i.e., Waymo [6,15], Lyft [7] and KITTI
[11, 12]). The details are described as follows.

Waymo The scene flow annotation of Waymo dataset
[6, 15] is bootstrapped from tracked bounding boxes of ob-
jects. In fact, it provides scene flow annotations after com-
pensating for ego-motion (i.e., the movement of LiDAR).
However, this leads to the discarding of relative motion
caused by LiDAR moving, so that the scene flow cannot
translate the first frame to align with the second frame,
which is different from previous datasets [10–12].

To enable existing models to be applied on Waymo, we
follow the same setting as previous datasets [10–12] and
retrieve ego-motion. For a pair of point cloud frames with
original scene flow vectors (Ps,Pt,F0), we first load each
frame’s transformation matrix (Ts,Tt), which represents
relative rotation and translation from world coordinates to
LiDAR coordinates. Subsequently, we retrieve ego-motion
and compute scene flow vectors as

F = Ps − (Ps −∆tF
0) · (Ts)−1 ·Tt, (1)

where ∆t is the time interval between two frames. Since
the scene flow annotation provided by Waymo is in form of
speed, we first multiply it by ∆t to get motion vectors. Be-
fore training, we adopt a similar way as KITTI to remove
ground points by height (< 0.3m) and extract points in the
front view. Then we remove points by distance (> 60m).
Moreover, we transform point clouds into the same coordi-
nate system as KITTI by global rotation.

Lyft We adopt the same way as Waymo to generate scene
flow annotations for Lyft [7]. Specifically, for each LiDAR
frame in Lyft, it provides bounding boxes for foreground
objects and two relative pose (i.e., rotation and translation)
of sensor and car respectively. In order to generate scene
flow labels, we first leverage bounding boxes to make the
alignment of objects with the same instance token from
two consecutive frames. After that, for points not included
in bounding boxes, we compute ego-motion as their scene
flow. For training and evaluation, we adopt the same way as
Waymo to remove undesired points.

KITTI The point clouds and scene flow labels of KITTI
Scene Flow dataset [11, 12] are generated from stereo im-
ages using the same per-processing steps as [5]. As dis-
cussed in previous works [1, 4, 6], KITTI is a semi-realistic
dataset as it involves per-processing that inevitably changes
real-world characteristics. Our experimental results also
show that synthetic-to-real performance degradation is less
on KITTI. Nevertheless, we also use KITTI as one of the

target domain datasets to demonstrate the generalization
ability of our method.

Appendix A.2. Network Implementations
• Input We subsample each frame into 8,192 points for all
datasets as the input of the network.
• Baselines For all three baselines (i.e., HPLFlowNet [5],
FLOT [14] and PV-RAFT [17]), we use the default param-
eters as they described in their papers.
• EMA α in EMA is set to 0.999 to update teacher model.
• Asymmetric Transformation We adopt random global
rotation along y axis as the augmentation strategy, which
is the axis perpendicular to the ground.
• Deformation Regularization We adopt the DBSCAN [2]
for clustering, which is a simple yet effective way to seg-
ment rigid objects since ground points have been removed
before input into the network.
• Correspondence Refinement We set K to 6 to compute
the Laplacian coordinates L1 and L2.
• MMD We apply it to the outputs of DownBCL7 in
HPLFlowNet for cross-domain feature alignment.
• Training Strategy NVIDIA A10 with 24GB GPU mem-
ory is used for all of our experiments. Since the teacher
model is a temporal-ensembling of the student model, train-
ing from scratch with random initialized student model
will lead to a meaningless teacher. Therefore we pretrain
HPLFlowNet on GTA-SF for 45 epochs, then we apply our
method on it and train for 15 epochs to adapt to real-world
datasets.

Appendix B. Detailed Analysis of GTA-SF
We provide additional illustration of our proposed GTA-

SF in Fig. 1 and further analyse the merits of it in the fol-
lowing.
• Annotation We annotate scene flow for GTA-SF in
a more realistic way. In FT3D, two consecutive frames
of point clouds are in point-wise correspondence, and the
scene flow vectors F are directly computed as F = Pt−Ps,
where Pt and Ps are target and source point cloud. How-
ever, such point-wise correspondence between two frames
does not exist in real-world point clouds due to sensor
movement and occlusion. In our GTA-SF, we annotate
scene flow in a similar way to Waymo. The main difference
is that the bounding box in Waymo contains only one direc-
tion information, while we leverage all three directions of
each entity to calculate more accurate scene flow in GTA-V.
• Scene Diversity We build more realistic and diverse
scenes to collect point clouds. As mentioned in the main
paper, our GTA-SF covers downtown, highway, streets and
other driving areas. Fig. 1 illustrates some typical point
cloud frames with annotated scene flow in our GTA-SF. It



First Frame Second Frame Ground Truth

Figure 1. Illustration of point clouds and annotated scene flow in our GTA-SF. The first row shows two consecutive point cloud frames in
each box, and the second row shows their corresponding ground truth obtained by adding generated scene flow to the first frame, which is
well aligned with the second frame.

can be seen that our GTA-SF covers a variety of vehicle
driving scenarios. Moreover, our generated scene flow is
able to accurately transform the first frame to match the sec-
ond frame.

Appendix C. Additional Experimental Results
Appendix C.1. Ablation on Parameters α and K

We further conduct experiments on GTA-SF→Waymo
to analyse the effects of parameters α in EMA and K in
Correspondence Refinement (CR). α is a smoothing coef-
ficient parameter controlling the update rate of the teacher
model, and K is the number of nearest neighbors used to
calculate Laplacian coordinates. Fig. 2 draws the perfor-
mance curves with different α and K. We set α from 0.990
to 0.999 and K from 3 to 18. It shows that the best result is
obtained when setting α to 0.999 and K to 6. In addition,
our method is robust to parameters as there is less than 5%
relative performance fluctuation.
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Figure 2. Effects of parameters α and K.

Appendix C.2. Effectiveness of Ground Points Re-
moval in GTA-SF

As ground points are meaningless for scene flow and
usually removed manually, in our GTA-SF, we propose to
leverage gaming information for better Ground Points Re-

Table 1. Ablation on Ground Points Removal (GPR). ↓ and ↑ re-
spectively indicate negative and positive polarity.

Methods EPE↓ AS↑ AR↑ Out↓
without GPR 0.1743 24.93 47.42 82.37

GPR by Height 0.1556 25.61 51.45 80.27
Our GPR 0.1061 32.35 66.21 65.35

moval (GPR). To validate our GPR is superior than gen-
eral strategy, i.e., removing by height, Tab. 1 quantitative
compares baseline results on Waymo using different GPR
strategies for GTA-SF. It shows directly training on GTA-
SF without GPR leads to poor performance. Compared to
the common GPR by Height, our method removes ground
points more effectively, facilitating training scene flow esti-
mators.

Appendix C.3. Comparison with Self-Supervised
Methods

Recently, a number of self-supervised methods [8, 9, 13,
18] for scene flow estimation have emerged. They gener-
ally do not require any real-world ground-truth data, which
is similar to our purpose. We reproduced the SOTA self-
supervised method FlowStep3D [8] on Waymo. As shown
in Tab. 2, (w/o self) means the model is pretrained on FT3D
then directly tested on Waymo. Our method shows superior
performance. Since self-supervised methods are finetuned
on real data, our method explicitly accounts for key issues
caused by domain gap, thus obtains larger improvements.

Appendix C.4. Comparison with More Domain
Adaptation Principles

In addition to MMD and Self-Ensemble, we conduct ex-
periments using adversarial-based DA approaches includ-
ing DANN [3] and ADDA [16]. We got 0.2515 EPE on
FT3D→Waymo. DANN showed a similar trend. We be-
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Figure 3. Qualitative comparison transferring from FT3D [10] and GTA-SF to Waymo [6, 15] and Lyft [7]. We compare the Baseline
results trained on different synthetic datasets and the results after applying our proposed UDA method (Ours). Parentheses mark the used
source domain dataset. The estimated scene flow is added to the first frame to get the prediction result for visualization, and performance
can be judged by how well the prediction (blue) align with the ground truth (red).



Table 2. Comparison with FlowStep3D on Waymo.

Methods EPE↓ AS↑ AR↑ Out↓
FlowStep3D (w/o self) 0.2476 35.31 61.77 68.69
FlowStep3D (w/ self) 0.1965 48.40 71.04 60.35

Ours (w/o UDA) 0.2477 31.59 57.22 77.08
Ours (w/ UDA) 0.1251 48.87 78.40 57.29

lieve the primary goal of adverserial DA is to align la-
tent features, while in scene flow estimation, explicit mo-
tion relationship between consecutive frames are important.
We therefore adapted mean-teacher, since it enables using
scene-flow outputs of momentum-updated teacher to guide
learning of motion relationships.

Appendix C.5. Analysis of the Effect of Synthetic
Data on Real Data

To further understand the value of synthetic data and
know whether it is a good supplement to real ground-truth,
we conduct the S+R→R experiments and use additional
GTA-SF data during training on Waymo. Results (Tab. 3)
show that additional GTA-SF data consistently improves or-
acle results, which indicates our GTA-SF is realistic and a
good supplement for the real data.

Table 3. Comparison between R→R and S+R→R.

Methods EPE↓ AS↑ AR↑ Out↓
Waymo→Waymo 0.0501 74.82 92.20 40.88

GTA-SF+Waymo→Waymo 0.0482 76.39 92.53 39.06

Appendix C.6. Qualitative Comparison

In the main paper, we quantitative compare the domain
adaptation performance on six source-target dataset pairs.
Due to the length limitation of the main paper, we further
provide illustrations transferring from FT3D [10] and GTA-
SF to Waymo [6,15] and Lyft [7] to demonstrate the superi-
ority of our method and GTA-SF dataset. As shown in Fig.
3, we qualitatively compare the performance by adding the
estimated scene flow to the first frame, which is called pre-
diction (colored in blue). The prediction and ground truth
are drawn in the same frame, so that the accuracy of scene
flow prediction can be judged by how well the prediction
align with the ground truth. By zooming in on local de-
tails, we show that the prediction of our method is more
consistent with the ground truth than baseline. Moreover,
the baseline results using GTA-SF as the source domain
are better than those using FT3D, which verifies the sig-
nificance of our proposed GTA-SF. Note that we omit the
visual comparisons on KITTI [11, 12] since the qualitative
improvement on KITTI is relative slight. Nevertheless, our

quantitative comparisons in the main paper demonstrate our
method achieve consistent performance on KITTI.
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