
A. Details of σl and other Φadv

Assumption of σl in [25]. To prove Eq. (2) according to
Theorem 1.5 in [76], [25] considers f

W̃
such that

∣∣∣||Wl||2−

||W̃l||2
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Assumption of σl in [54]. To prove the PAC-Bayesian
bound in [54] according to Theorem 1.5 in [76], [54] as-
sumes all variances are same across layers, that is, σl = σ.

Our assumption of σl. We can prove Lem. 3.2 under both
of above assumptions. To make the main paper more clear,
we assume that σl = σ in the main paper. And we provide
the proofs of Lem. 3.2 for σl = σ and σl = ||W̃l||2

β
W̃l

σ in

Appendix B (the assumption of σl =
||W̃l||2
β
W̃l

σ includes the

assumption of σl = σ).

PGM attack for Φadv. For a PGM attack with noise
power ϵ given Euclidean norm || · ||, r iterations for attack
and step size Z , let κ ≤ ||∇s′′L(fW(s′′))|| hold for every
s′′ ∈ {D ∪ D′} with constant κ > 0, then we get [25]
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where
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gives an upper bound on the Lipschitz constant of
∇sL(fW(s)).

B. Proof of Lem. 3.2

We provide our proofs based on the proofs in [25], to be
clearer about the proofs, we suggest readers go through
Appendix C.2 in [25] firstly. To prove Eq. (2), [25] con-
siders f

W̃
such that
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n ||W̃l||2, since
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and for each j, we get

1

||Wj ||2

n∏
l=1

||Wl||2 ≤ e

||W̃j ||2

n∏
l=1

||W̃l||2 (24)

and

1

||W̃j ||2

n∏
l=1

||W̃l||2 ≤ (1− 1

n
)−(n−1) 1

||Wj ||2

n∏
l=1

||Wl||2

≤ e

||Wj ||2

n∏
l=1

||Wl||2.

(25)
Then let σl = σ ( ||W̃l||2
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FGM perturbs vector be

δfgmW (s) := argmax
||δ||≤ϵ

δ⊺∇sL(fW(s)). (26)

According to Appendix C.2 Eq. (22) in [25], we get the
following inequation
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According to Section 1.1 in [5], we have
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where c > 0 is a universal constant. Taking a union
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(22) in [25], Eqs. (24) and (27), we can get
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Then we can get
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for FGM attack.
Proofs for PGM attack are similar (combine Eqs. (28)
and (30) and Appendix C.3 in [25]).

C. Sampling Method

We use sharpness-like method [34] to get a set of weight
samples (W + η) such that |L(fW+η) − L(fW)| ≤ ϵ′

(e.g., ϵ′ = 0.05 for CIFAR-10/SVHN and ϵ′ = 0.1 for
CIFAR-100), where vec(η) is a 0 mean Gaussian noise.
To get the samples from the posteriori distribution steadily
and fastly, we train the convergent network with learn-
ing rate 0.0001, noise η and 50 epochs, then collect cor-
responding 50 samples. As the samples are stabilized at
(clean/adversarial) training loss and validation loss but with
different weights, we can treat them as the samples from
same (clean/adversarial) posteriori distribution and estimate
the correlation matrix through these samples.

D. Proofs of Lems. 4.1, 4.2

As we assume rsrs′ ≥ 0 (above Lem. 4.1), we give the
proofs with two cases (rs ≥ 0 and rs ≤ 0).

Proof for Lem. 4.1.
Let rs ≥ 0 and rs′ ≥ 0, we get
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Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to a decline
in Λ′

l,max and Λ′′
l,max.
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Figure 3. (a) We sample 10000 9-dimensional correlation matrices and demonstrate ||Rl||2F w.r.t Λ′
l,max or Λ′′

l,max. (b) We sample 10000

9-dimensional correlation matrices and demonstrate ||Rl||2F w.r.t Λkl
l,minΛ

h2−kl
l,max . (c) We sample 10000 16-dimensional correlation matrices

and demonstrate ||Rl||2F w.r.t Λ′
l,max or Λ′′

l,max. (d) We sample 10000 16-dimensional correlation matrices and demonstrate ||Rl||2F w.r.t

Λ
kl
l,minΛ

h2−kl
l,max .

Figure 4. (a) shows the normalized spectral norm of R′
S , R′′

S , and the determinant of RS , with sampling estimation (S) and Laplace
approximation (L) respectively. (b) and (c) demonstrate the absolute correlation matrix of partial weights (estimate under clean data), for
AT and AT+S2O respectively.

and
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Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to a decline
in Λ′

l,max and Λ′′
l,max.

Proof for Lem. 4.2.
Let rs ≥ rs′ ≥ 0, we get

c(r) = Λkl

l,minΛ
h2−kl

l,max

= (1− rs)
h2−1(1 + (h2 − 1)rs)

(36)

and

∂c(r)

∂rs
= −h2(h2 − 1)rs(1− rs)

h2−2 ≤ 0, (37)

it is easy to get c(r) is negative correlated with rs. Similarly,
if rs′ ≥ rs ≥ 0, we can get c(r) is negative correlated with
rs′ . Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to an
increase in Λkl

l,minΛ
h2−kl

l,max .

Let rs ≤ rs′ ≤ 0, we get
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and

∂c(r)
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= −h2(h2 − 1)rs(1− rs)

h2−2 ≥ 0, (39)

it is also easy to get c(r) is positive correlated with rs. Sim-
ilarly, if rs′ ≤ rs ≤ 0, we can get c(r) is positive correlated
with rs′ . Thus, decreasing ||Rl,S ||2F and ||Rl,S′ ||2F leads to
an increase in Λkl

l,minΛ
h2−kl

l,max .



E. Simulations of Lems. 4.1, 4.2 and Second-
Order Statistics of Weights under Clean
Data

As Fig. 3 shows, for 10000 random general 9-dimensional
correlation matrices and 16-dimensional correlation matri-
ces respectively, Lems. 4.1 and 4.2 also hold approximately.

The results in Fig. 4 also suggest that S2O can decrease the
spectral norm of R′

S , R′′
S and increases the determinant of

RS .

F. Approximate Optimization
We use a fast approximate method to update g(A), i.e.,

add a penalty term to the high correlated al,i and al,j to
reduce their correlation. Details are given in the code.
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