A. Details of o; and other ®»1"

Assumption of o; in [25].
Theorem 1.5 in [76], [25] considers fg; such that |||[W|[o—
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Assumption of o; in [54]. To prove the PAC-Bayesian
bound in [54] according to Theorem 1.5 in [76], [54] as-
sumes all variances are same across layers, that is, 0; = 0.

Our assumption of ;. We can prove Lem. 3.2 under both
of above assumptions. To make the main paper more clear,

we assume that o; = o in the main paper. And we provide
the proofs of Lem. 3.2 for o; = ¢ and 07 = %a in
w;
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Appendix B (the assumption of o o includes the

assumption of g; = o).

PGM attack for ®*!V. For a PGM attack with noise
power € given Euclidean norm || - ||, r iterations for attack
and step size Z, let k < ||V L(fw(s"))]|| hold for every
s’ € {D U D'} with constant x > 0, then we get [25]
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B. Proof of Lem. 3.2

We provide our proofs based on the proofs in [25], to be
clearer about the proofs, we suggest readers go through
Appendix C.2 in [25] firstly. To [0 prove Eq. (2), [25] con-

siders f such that ‘HWIHQ —||Wil2 ’ < %HW[HQ, since
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According to Appendix C.2 Eq. (22) in [25], we get the
following inequation
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where ¢ > 0 is a universal constant. Taking a union

bond over the layers, we get that, with probability > %,
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Then, according to Appendix C.2 Eq.
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for FGM attack.
Proofs for PGM attack are similar (combine Egs. (28)
and (30) and Appendix C.3 in [25]).

C. Sampling Method

We use sharpness-like method [34] to get a set of weight
samples (W + ) such that |L(fwy,) — L(fw)| < €
(e.g., € = 0.05 for CIFAR-10/SVHN and ¢ = 0.1 for
CIFAR-100), where vec(n) is a 0 mean Gaussian noise.
To get the samples from the posteriori distribution steadily
and fastly, we train the convergent network with learn-
ing rate 0.0001, noise 1 and 50 epochs, then collect cor-
responding 50 samples. As the samples are stabilized at
(clean/adversarial) training loss and validation loss but with
different weights, we can treat them as the samples from
same (clean/adversarial) posteriori distribution and estimate
the correlation matrix through these samples.

D. Proofs of Lems. 4.1, 4.2

As we assume 757 > 0 (above Lem. 4.1), we give the
proofs with two cases (rs > 0 and rg < 0).

Proof for Lem. 4.1.
Letrg > O and rgs > 0, we get
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Thus, decreasing ||R; s||% and ||R; s/||% leads to a decline
in A] and A/
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Figure 4. (a) shows the normalized spectral norm of R's, R” s, and the determinant of R.s, with sampling estimation (S) and Laplace
approximation (L) respectively. (b) and (c¢) demonstrate the absolute correlation matrix of partial weights (estimate under clean data), for

AT and AT+S20 respectively.
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Proof for Lem. 4.2.
Letrs > rg > 0, we get
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E. Simulations of Lems. 4.1, 4.2 and Second-
Order Statistics of Weights under Clean
Data

As Fig. 3 shows, for 10000 random general 9-dimensional
correlation matrices and 16-dimensional correlation matri-
ces respectively, Lems. 4.1 and 4.2 also hold approximately.

The results in Fig. 4 also suggest that S?O can decrease the
spectral norm of R’s, R” s and increases the determinant of
Rs.

F. Approximate Optimization

We use a fast approximate method to update g(A), i.e.,
add a penalty term to the high correlated a;; and a; ; to
reduce their correlation. Details are given in the code.
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