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1. Additional Technical Details
As stated in the main article, we borrow the architecture of our geometry reasoner from CasMVSNet [2]. We construct

D(2) = 48 depth planes for the coarsest cost volume, D(1) = 32 for the intermediate one, and D(0) = 8 for the finest
full-resolution cost volume. We use channel size C = 8 in group-wise correlation similarity calculations. When training the
generalizable model, we create a set of 3–5 nearby source views for constructing each cost volume, whereas for fine-tuning
and evaluating, we always use a set of 5 nearby views. Also, we scale input images with a factor uniformly sampled from
{1.0, 0.75, 0.5} when we train our generalizable model.

The network architectures of Feature Pyramid Network (FPN), 3D regularizer (R(l)
3D), and the auto-encoder (AE) are

provided in Tables 1, 2, and 3 respectively.

2. Additional Qualitative Analysis
Full-size examples of rendered images for novel views by our GeoNeRF model are presented in Figures 1 and 2. Figure 1

includes samples from the real forward-facing LLFF dataset [3], and Figure 2 contains samples from the NeRF realistic
synthetic dataset [4]. In addition to the rendered images, we also show the rendered depth maps for each novel view. Images

Input Layer Output
Input ConvBnReLU(3, 8, 3, 1) conv0 0
conv0 0 ConvBnReLU(8, 8, 3, 1) conv0
conv0 ConvBnReLU(8, 16, 5, 2) conv1 0
conv1 0 ConvBnReLU(16, 16, 3, 1) conv1 1
conv1 1 ConvBnReLU(16, 16, 3, 1) conv1
conv1 ConvBnReLU(16, 32, 5, 2) conv2 0
conv2 0 ConvBnReLU(32, 32, 3, 1) conv2 1
conv2 1 ConvBnReLU(32, 32, 3, 1) conv2
conv2 Conv(32, 32, 1, 1) feat2
conv1 Conv(16, 32, 1, 1) f1 0
conv0 Conv(8, 32, 1, 1) f0 0
(feat2, f1 0) Upsample and Add(x, y) f1 1
(f1 1, f0 0) Upsample and Add(x, y) f0 1
f1 1 Conv(32, 16, 3, 1) feat1
f0 1 Conv(32, 8, 3, 1) feat0

Table 1. Network architecture of Feature Pyramid Network (FPN), where feat2, feat1, and feat0 are output feature pyramids. Conv(cin,
cout, k, s) stands for a 2D convolution with input channels cin, output channels cout, kernel size of k, and stride of s. ConvBnReLU
represents a Conv layer followed by Batch Normalization and ReLU nonlinearity. Upsample and Add(x, y) adds y to the bilinearly
upsampled of x.



Input Layer Output
Input ConvBnReLU(8, 8, 3, 1) conv0
conv0 ConvBnReLU(8, 16, 3, 2) conv1
conv1 ConvBnReLU(16, 16, 3, 1) conv2
conv2 ConvBnReLU(16, 32, 3, 2) conv3
conv3 ConvBnReLU(32, 32, 3, 1) conv4
conv4 ConvBnReLU(32, 64, 3, 2) conv5
conv5 ConvBnReLU(64, 64, 3, 1) conv6
conv6 TrpsConvBnReLU(64, 32, 3, 2) x 0
(conv4, x 0) Add(x, y) x 1
x 1 TrpsConvBnReLU(32, 16, 3, 2) x 2
(conv2, x 2) Add(x, y) x 3
x 3 TrpsConvBnReLU(16, 8, 3, 2) x 4
(conv0, x 4) Add(x, y) x 5
x 5 ConvBnReLU(8, 8, 3, 1) prob 0
prob 0 Conv(8, 1, 3, 1) prob
x 5 ConvBnReLU(8, 8, 3, 1) feat

Table 2. Network architecture of the 3D regularizer (R(l)
3D), where feat is the output 3D feature map Φ(l) and prob is the output probability

which is used to regress the depth map D̂(l). Conv(cin, cout, k, s) stands for a 3D convolution with input channels cin, output chan-
nels cout, kernel size of k, and stride of s. ConvBnReLU represents a Conv layer followed by Batch Normalization and ReLU nonlinearity,
and TrpsConv stands for transposed 3D convolution. Add(x, y) simply adds y to x.

Input Layer Output
Input ConvLnELU(32, 64, 3, 1) conv1 0
conv1 0 MaxPool conv1
conv1 ConvLnELU(64, 128, 3, 1) conv2 0
conv2 0 MaxPool conv2
conv2 ConvLnELU(128, 128, 3, 1) conv3 0
conv3 0 MaxPool conv3
conv3 TrpsConvLnELU(128, 128, 4, 2) x 0
[ conv2 ; x 0 ] TrpsConvLnELU(256, 64, 4, 2) x 1
[ conv1 ; x 1 ] TrpsConvLnELU(128, 32, 4, 2) x 2
[ Input ; x 2 ] ConvLnELU(64, 32, 3, 1) Output

Table 3. Network architecture of the auto-encoder network (AE). Conv(cin, cout, k, s) stands for a 1D convolution with input channels cin,
output channels cout, kernel size of k, and stride of s. ConvLnELU represents a Conv layer followed by Layer Normalization and ELU
nonlinearity, and TrpsConv stands for transposed 1D convolution. MaxPool is a 1D max pooling layer with a stride of 2, and [· ; ·] denotes
concatenation.

indicated by GeoNeRF are rendered by our generalizable model, while images indicated by GeoNeRF10k are rendered after
fine-tuning our model on each scene for 10k iterations.

3. Per-Scene Breakdown
Tables 4, 5, 6, and 7 break down the quantitative results presented in the main paper into per-scene metrics. The results

are consistent with the aggregate results in the main paper. Tables 4 and 5 include the scenes from the real forward-facing
LLFF dataset [3], and Tables 6 and 7 contain the scenes from NeRF realistic synthetic dataset [4]. As it was already shown
in the main paper, our generalizable GeoNeRF model outperforms all existing generalizable methods on average, and after
fine-tuning, it is on par with per-scene optimized vanilla NeRF [4].



Figure 1. Full-size examples of novel images and their depth map rendered by our generalizable (GeoNeRF) and fine-tuned (GeoNeRF10k)
models. The images are from test scenes of the real forward-facing LLFF dataset [3].



Figure 2. Full-size examples of novel images and their depth map rendered by our generalizable (GeoNeRF) and fine-tuned (GeoNeRF10k)
models. The images are from test scenes of the NeRF realistic synthetic dataset [4].



PSNR↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF [7] 12.40 10.00 14.07 11.07 9.85 9.62 11.75 10.55
IBRNet [5] 23.84 26.67 30.00 26.48 20.19 19.34 29.94 24.57
MVSNeRF [1] 21.15 24.74 26.03 23.57 17.51 17.85 26.95 23.20
GeoNeRF 24.61 28.12 30.49 26.96 20.58 20.24 28.74 23.75

SSIM↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF [7] 0.531 0.433 0.674 0.516 0.268 0.317 0.691 0.458
IBRNet [5] 0.772 0.856 0.883 0.869 0.719 0.633 0.946 0.861
MVSNeRF [1] 0.638 0.888 0.872 0.868 0.667 0.657 0.951 0.868
GeoNeRF 0.811 0.885 0.898 0.901 0.741 0.666 0.935 0.877

LPIPS↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

pixelNeRF [7] 0.650 0.708 0.608 0.705 0.695 0.721 0.611 0.667
IBRNet [5] 0.246 0.164 0.153 0.177 0.230 0.287 0.153 0.230
MVSNeRF [1] 0.238 0.196 0.208 0.237 0.313 0.274 0.172 0.184
GeoNeRF 0.202 0.133 0.123 0.140 0.222 0.256 0.150 0.212

Table 4. Per-scene Quantitative comparison of our proposed GeoNeRF with existing generalizable NeRF models on real forward-facing
LLFF dataset [3] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics.

PSNR↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF [4] 25.17 27.40 31.16 27.45 20.92 20.36 32.70 26.80
GeoNeRF10k 25.24 28.57 30.75 28.12 21.40 20.39 31.51 26.63
GeoNeRF1k 25.08 28.74 30.83 27.66 21.16 20.41 30.52 26.07

SSIM↑
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF [4] 0.792 0.827 0.881 0.828 0.690 0.641 0.948 0.880
GeoNeRF10k 0.829 0.890 0.900 0.912 0.781 0.674 0.956 0.910
GeoNeRF1k 0.824 0.892 0.905 0.908 0.769 0.673 0.946 0.901

LPIPS↓
Fern Flower Fortress Horns Leaves Orchids Room T-Rex

NeRF [4] 0.280 0.219 0.171 0.268 0.316 0.321 0.178 0.249
GeoNeRF10k 0.185 0.120 0.125 0.126 0.183 0.247 0.126 0.181
GeoNeRF1k 0.189 0.114 0.117 0.130 0.198 0.248 0.135 0.188

Table 5. Per-scene Quantitative comparison of our fine-tuned GeoNeRF with per-scene optimized vanilla NeRF [4] on real forward-facing
LLFF dataset [3] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics. Our model is
fine-tuned on each scene for 10k iterations (GeoNeRF10k) and 1k iterations (GeoNeRF1k), and NeRF [4] is optimized for 200k iterations.



PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF [7] 7.18 8.15 6.61 6.80 7.74 7.61 7.71 7.30
IBRNet [5] 28.54 21.22 24.23 31.72 24.59 22.20 27.97 23.64
MVSNeRF [1] 23.35 20.71 21.98 28.44 23.18 20.05 22.62 23.35
GeoNeRF 31.84 24.00 25.28 34.33 28.80 26.16 31.15 25.08

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF [7] 0.624 0.670 0.669 0.669 0.671 0.644 0.729 0.584
IBRNet [5] 0.948 0.896 0.915 0.952 0.918 0.905 0.962 0.834
MVSNeRF [1] 0.876 0.886 0.898 0.962 0.902 0.893 0.923 0.886
GeoNeRF 0.973 0.921 0.931 0.975 0.956 0.926 0.978 0.844

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

pixelNeRF [7] 0.386 0.421 0.335 0.433 0.427 0.432 0.329 0.526
IBRNet [5] 0.066 0.091 0.097 0.067 0.095 0.115 0.051 0.219
MVSNeRF [1] 0.282 0.187 0.211 0.173 0.204 0.216 0.177 0.244
GeoNeRF 0.040 0.098 0.092 0.056 0.059 0.116 0.037 0.200

Table 6. Per-scene Quantitative comparison of our proposed GeoNeRF with existing generalizable NeRF models on NeRF realistic syn-
thetic dataset [4] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics.

PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [4] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
GeoNeRF10k 33.54 25.13 27.79 36.26 30.32 28.19 33.41 28.76
GeoNeRF1k 32.76 24.74 27.06 35.71 29.79 27.69 32.83 28.11

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [4] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
GeoNeRF10k 0.980 0.935 0.955 0.983 0.965 0.953 0.987 0.890
GeoNeRF1k 0.977 0.930 0.948 0.982 0.961 0.948 0.985 0.883

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

NeRF [4] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
GeoNeRF10k 0.024 0.073 0.061 0.032 0.041 0.058 0.016 0.137
GeoNeRF1k 0.030 0.081 0.069 0.034 0.046 0.069 0.020 0.145

Table 7. Per-scene Quantitative comparison of our fine-tuned GeoNeRF with per-scene optimized vanilla NeRF [4] on NeRF realistic
synthetic dataset [4] in terms of PSNR (higher is better), SSIM [6] (higher is better), and LPIPS [8] (lower is better) metrics. Our model is
fine-tuned on each scene for 10k iterations (GeoNeRF10k) and 1k iterations (GeoNeRF1k), and NeRF [4] is optimized for 500k iterations.

4. Ablation Study
An ablation study of our generalizable model on the NeRF synthetic dataset [4] and the real forward-facing dataset [3] is

presented in Table 8, contrasting the effectiveness of individual components of our proposed model. We evaluated GeoNeRF
in the cases where (a) no self-supervision loss is used, (b) no positional encoding is employed, (c) points on a ray are merely
sampled uniformly, (d) occluded views are not excluded, (e) attention mechanism is removed from the renderer, (f) view-
independent tokens are not regularized with the AE network before predicting volume densities, and (g) only a single cost



Experiment Realistic Synthetic NeRF [4] Real Forward Facing LLFF [3] ExamplesPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
a. Without self-supervision 28.10 0.935 0.098 25.37 0.836 0.184 Figure 3.a
b. Without positional encoding 27.19 0.927 0.116 25.02 0.836 0.189 Figure 3.b
c. Uniform sampling along a ray 28.04 0.934 0.089 25.31 0.835 0.184 Figure 3.c
d. Without occlusion masks 27.92 0.932 0.097 25.22 0.834 0.185 Figure 3.d
e. Without attention mechanism 27.69 0.929 0.135 24.95 0.828 0.194 Figure 3.e
f. Without the AE network 23.53 0.884 0.182 24.92 0.821 0.199 Figure 3.f
g. Single cost volume 26.60 0.915 0.132 24.60 0.814 0.211 Figure 3.g
h. Full GeoNeRF 28.33 0.938 0.087 25.44 0.839 0.180 Figure 3.h

Table 8. Ablation study of the key components of GeoNeRF. The evaluation is performed on the NeRF synthetic [4] and the real forward-
facing LLFF [3] test scenes. See Section 4 for the details of these experiments, and see Figure 3 for qualitative analysis.

Figure 3. Qualitative ablation study of the key components of GeoNeRF. The examples are selected from challenging views of the NeRF
synthetic dataset [4]. Columns correspond to the experiments in Table 8.

volume is constructed per-view instead of cascaded multi-level cost volumes.
Figure 3 contains examples from the NeRF synthetic dataset [4] for qualitative analysis corresponding to the experiments

in Table 8. The examples focus on challenging views of the scenes in order to contrast the behavior of the models properly.

5. Limitations
Our model with the experimental settings in the main article can be trained and evaluated on a single GPU with 16 GB

of memory. Failure cases in our model could occur when the stereo reconstruction fails in the geometry reasoner, and the
renderer is misled by incorrect geometry priors. Since the architecture of the geometry reasoner is inspired by multi-view
stereo models, it is prone to failure in textureless areas similarly. Such failure examples are shown in Fig. 4.



Figure 4. Failure examples in our method where stereo reconstruction fails in the geometry reasoner for textureless areas.
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