Supplemental Material for
The Neurally-Guided Shape Parser:
Grammar-based Labeling of 3D Shape Regions with Approximate Inference

A. Data Details
A.1. Data Preprocessing

Ground-truth shape regions for instances in our datasets
are created from PartNet [9]. Specifically, we create a shape
region for each connected mesh-component of a given shape
in PartNet. This guarantees the region decomposition is
at minimum an instance segmentation, as each leaf part
instance must correspond with at least 1 connected mesh-
component, but it many cases it creates an instance over-
segmentation, as a single leaf part instance will be repre-
sented by more than 1 mesh-component. To determine the
semantic label of a region, we find the terminal label in the
shape grammar that is a parent of the label assigned to the
shape region by PartNet. Note that there will only ever be
one such parent (because of the unique path assumption from
Section 3). There are some shape instances where there are
no parent labels that meet this criteria, in which case we do
not include the shape in our datasets. Details of the shape
grammars we use can be found in Section F. Additionally
we filter out any shape instances with very small part regions
that would be hard to reason over with point clouds of size
10000 (the number of points used by all point cloud con-
suming networks we consider). If any shape region has an
area that makes up less than 0.1% of the total shape area, the
entire shape instance is ignored.

A.2. Creating Dataset Splits

We used shapes from the chair, lamp, table, vase, knife,
and storage furniture categories of PartNet. These were all
the categories that had at least 250 valid shape instances (as
defined by criteria in Section A.1) and had shape grammar
definitions at a fine granularity. For each of these datasets, we
created train/val/test splits so that no set had more than 400
shapes or less than 50 shapes. Additionally, when making the
splits we employed a greedy strategy where we tried to keep
each terminal label of the grammar evenly represented (both
across and within sets), whenever possible. Exact numbers
of shapes in each split, for each category, can be found in
Table 1. For all experiments, validation and test sets remain
constant. In the experiment where the number of training

Set Chair Lamp Table Storage Vase Knife
Train 400 400 400 400 400 239
Validation 400 157 400 55 54 50
Test 400 157 400 55 54 50

Table 1. The number of shapes in the train, validation, and test set
splits for each category.

set examples is varied, each training set at a smaller size is a
proper subset of the corresponding larger training set.

A.3. Region Corruption

In Section 4.5 of the main paper, we describe an experi-
ment where we analyze the robustness of NGSP to corrup-
tions of the input regions. We experiment with two levels
of corruptions, the 2X paradigm, where each region is split
into 2 regions, and the 4X paradigm, where each region is
split into 4 regions. The corruptions for the 2X paradigm
are produced in the following manner. For each region, a
random mesh face, fy, from that region is sampled. Then,
treating each face as the average of its vertices, the furthest
mesh face from fy, f1, is found. We then find the furthest
mesh face from f; within the region, f,. For all other faces
within the region, we record their distance from both f; and
f2, and assign each face to the cluster it is closest to. Regions
containing a single mesh face are not further split. To gener-
ate the 4X splits, the 2X split procedure is applied twice in
succession.

B. Training Details
B.1. Training Hyperparameters

The geometry, layout, and guide networks are variants of
PointNet++’s written in PyTorch [10—12]. All PointNet++’s
use 3 set abstraction layers with 1024, 256, 64 grouping
points, 0.1, 0.2, 0.4 radius size and 64, 128, 256 feature size
respectively, with the global pooling step done at a feature
size of 1024. ReLU activations are used throughout. All mul-
tilayer perceptron (MLP) heads for per-shape or per-point
classification use 2 hidden layers with dimensions of 256 and

64 with leaky ReL.U activations (slope 0.02). We train with
batch size of 16, without any batch normalization, but with
dropout in the MLPs of 0.4 within the guide network and 0.2
for the geometry and layout networks. For the guide network,
batch members are randomly sampled from the data. For
the geometry and layout network, each batch contains one
positive example, and the rest of the batch contains negative
examples mined with respect to the positive one. The binary
classification loss is computed with a mean operation inde-
pendently for the positive and negative examples, and then
summed together. We convert mesh data into 100000 points
sampled uniformly from the surface of each shape, in order
to be able to reason about regions of small, fine-grained parts.
The guide network uses point clouds with 10000 points while
the geometry and layout networks uses 4096 points. If there
are less than the expected number of points corresponding
to the union of regions needed while querying the geometry
or layout networks, we repeat points in order to facilitate
batch training and evaluation. All networks receive data
augmentation in the form of random non-uniform scales and
point-wise perturbations.

The region network uses a graph neural network architec-
ture that operates over a graph of shape regions; we describe
the graph generation process in Section B.4, that constructs
the graph topology and initializes the per-node and per-edge
features. The region network performs 4 cycles of gated
graph convolution [3, 6], with residual node connections,
a batch size of 16, and no batch normalization, After the
graph convolutions, a global readout max-pooling operation
is applied across all node features within each graph, so that
there is a single feature representation for each graph. For
the label region network, a linear layer takes this feature
representation and predicts a probability distribution over
terminals in the grammar. For the area region network, a
linear layer takes this feature representation and predicts a
single scalar value.

B.2. Semantic Label Negative Sampling Strategies

As mentioned in the main paper, positive examples for the
geometry and layout networks are sourced directly from the
ground-truth label assignments to regions of the input shapes.
Negative examples are sourced by finding label assignments
different from the canonical version, that would change the
assigned regions, or child labels of the assigned regions, for
the label of interest. However, negative examples that are too
similar to their corresponding positive examples are not used.
To check this, we measure the percentage of region area that
is unchanged between the positive and negative example, if
this percentage is above .95, then we ignore that negative
example. We employ a set of negative sampling strategies
to find suitable ‘incorrect’ label assignments, detailed as
follows:

Label Assignment Perturbations One way to source neg-
ative examples is to find ‘incorrect’ label assignments that
are deviations from the original label assignment to the entire
shape. We do this by creating 9999 perturbed label assign-
ments for each shape, where 100 have 1 label change, 200
and 2 label changes, 300 have 3 label changes, 400 have 4
label changes, 500 have 5 label changes, 500 have 10% label
changes, 1000 have 20% label changes, 1500 have 30% label
changes, 2000 have 40% label changes, 2500 have 50% label
changes and 999 have all labels changed. When sampling
label changes, we make it more likely that labels will be
switched to other labels in the grammar they are closer to in
the hierarchy of labels implied by the grammar.

Adding Regions In this method to source negative exam-
ples for a given shape and label, we first identify all regions
that are assigned to this label, and all regions that are not
assigned to this label, under the canonical labeling. Then
some regions (randomly sampled) that are not assigned to
this label are switched to be assigned to the label of interest.

Removing Regions In this method to source negative ex-
amples for a given shape and label, we first identify all
regions that are assigned to this label under the canonical
labeling. Then some regions (randomly sampled) that are
assigned to this label are removed and are no longer assigned
to the label of interest.

Using Regions from different Parts In this method to
source negative examples for a given shape and label, we
first identify all regions that are not assigned to this label
under the canonical labeling. Then a subset of these regions
(randomly sampled) are assigned to the label of interest (with
all other regions in the shape unassigned to this label).

Using Regions from a different Shape In this method to
source negative examples for a given shape and label, we
first find all other shapes in the dataset where the label of
interest was not seen, and sample one such shape. Then
a subset of regions (randomly sampled) from this sampled
shape is assigned to the label as a negative example.

Changing the Child Label of Regions This method to
source negative examples for a given shape and label is only
used by the layout networks. No regions of the input shape
are changed, instead for each region there is a 50% chance
to change the assigned child label of the region to a different
random value (consistent with the available options defined
by the grammar).

For all other negative sampling strategies, when negative
examples are generated for the layout network and a new

region is added, a random child label is assigned in the same
fashion.

B.3. Differentiating Geometry and Layout Net-
works

The differences between the geometry and layout net-
works come from the input features, the labels in the shape
grammar they cover, and the types of negative examples they
learn from. Both types of networks principally operate over
points that come from regions assigned to the label of inter-
est. The layout network additionally receives the assigned
child label of each point with respect to the corresponding
label as a onehot vector concatenated to the XYZ position
of each point. As the terminal labels of the shape grammar
have no children labels, they are not assigned any layout
networks. As the root label of the shape grammar always
encompasses all shape regions, there is no geometry network
assigned to it. The types of negative examples seen by each
network are sampled at different rates. For the geometry
network, the sampling probabilities for each negative exam-
ple are (corresponding to the strategies listed in B.2): 50%
label assignment perturbations, 15% adding regions, 15% re-
moving regions, 15% using regions from different parts, 5%
using regions from a different shape and 0% changing the
child label of regions. For the layout network, the sampling
probabilities for each negative example are (corresponding
to the strategies listed in B.2): 50% label assignment pertur-
bations, 7.5% adding regions, 7.5% removing regions, 7.5%
using regions from different parts, 2.5% using regions from a
different shape and 25% changing the child label of regions.

B.4. Region Graph Creation

The region network takes as input a collection of shape
regions represented as a graph. The nodes of this graph
correspond to shape regions, and the edges are created such
that the graph is fully connected. To populate the initial
node and edge features we use point cloud auto-encoders.
The point cloud auto-encoders are trained on a collection
of chair shapes we gather from PartNet; we make use of
their shape region decompositions but do not use their label
information. For the node feature, we train a PointNet++ to
consume a 1024 dimensional point cloud sampled from one
shape region, project it into a 64 dimensional latent space,
and then decode the 64 dimensional vector with a 3-layer
MLP into a 1024 x 3 vector; encouraging the input and
output point clouds to match with a Chamfer distance loss.
For the edge feature, we train a point cloud auto-encoder
to consume two 1024 dimensional point clouds sampled
from two shape regions. The point clouds are distinguished
from one another with a one hot encoding appended to each
XYZ position. These point clouds are concatenated together
to form a 2048 x 5 input vector. A PointNet++ module
consumes this input and projects it into a 64 dimensional

latent space. This 64 dimensional vector is then run through
a 3-layer MLP to form a 2048 x 3 vector. We interpret the
first 1024 of these points to correspond to the first region
and the last 1024 of these points to correspond to the second
region, and encourage each decoded point cloud to match
its target with a Chamfer distance loss. For both paradigms,
all shape regions are centered and scaled to lie within the
unit sphere, and training is done with the Adam optimizer,
a learning rate of 0.0001, and a batch size of 32. Both the
region point cloud auto-encoder and the paired-region point
cloud auto-encoder are pretrained and frozen; they are used
across categories and labeled data training set sizes. Finally,
when creating region graphs for the region network, per-node
features are created by running the region through the region
point cloud auto-encoder, and per-edge features are created
by running pairs of regions through the paired-region point
cloud auto-encoder. The position and scale of each region
are also concatenated onto each per-node feature.

C. Perceptual Study

As described in Section 4.6 of the main paper, we ran a
perceptual user-study to determine semantic segmentation
performance for ‘in the wild‘ shape instances that lacked
ground-truth label annotations. We recruited 12 college stu-
dents to participate in our study. Each participant was shown
a sequence of 46 shape segmentation examples. Each ex-
ample compared the shape segmentations produced by two
different methods (either NGSP and PartNet or NGSP and
LHSS). We visualized each labeling by expanding the label
hierarchy of the grammar. For each label of the grammar,
when the two label assignments agreed on which parts were
assigned to that label, that label was colored purple. When
the two methods differed on which parts were assigned to
that label, each method’s parts were depicted side-by-side
and given different colors (orange or blue). Figure 1 shows
an example prompt, where the orange labeling is predicted
by NGSP and the blue labeling is predicted by LHSS. For
each example, the participants were asked to pick the label
assignment (orange or blue) that better matched the given
shape; we reported quantitative results of this study in Ta-
ble 4 of the main paper. For this quantitative analysis we
included all participants who spent between 5 minutes and
30 minutes on this task; excluding 2 outliers who took 2
minutes and 4 hours respectively to complete the survey.

As described in the main paper, we sourced the ‘in the
wild” shapes from the ShapeNet dataset [4]. We used shape
instances from the chair category, and collected a set of 26
meshes whose given connected-components roughly cor-
responded to part-instance over-segmentations. For each
of these 26 meshes, we produced 2 potential label assign-
ment comparisons (for comparisons against both PartNet
and LHSS). The choice of which method should be colored
blue or orange was randomized for every rendering. To not

chair_seat

seat_frame

seat_surface

'!’.)

el

chair_back

%,

chair_arm

chair_base

-t b

.\ \ -
4 4
)

Figure 1. Example comparison from our perceptual study visualizing two label assignments to shape regions sourced from a ShapeNet
mesh [4]. The orange labeling is from NGSP and the blue labeling is from LHSS. The supplemental includes additional examples.

overwhelm each participant, instead of expanding the entire
chair grammar hierarchy, for each example we always show
all the children of the root node (chair back, base, seat, arm,
head, footrest), and we randomly choose to show the full
expansion of exactly one child. Depending on the given
label assignments, some root children expansion views did
not present a substantial qualitative difference between the
two semantic segmentation methods (either because of very
small and hard to perceive shape regions or because the
chosen label assignments were the same for the expanded
nodes); we manually removed such expansions from the ex-
periment, reducing the number of examples each participant
was asked to make judgement on from 52 -> 46. In the sup-
plemental zip-file, we include all of the comparison renders
that participants were shown in the experiment. In Figure
2 we include qualitative comparisons of predicted labelings
from different methods.

D. Comparison Method Implementation Details
D.1. BAE-NET

We follow the implementation provided by the BAE-NET
author’s whenever possible [5]. To produce voxelizations
that BAE-NET takes as input, we take the following steps.
First we create a manifold version of the mesh [8]. Then
we compute inside-outside values for query points that lie
along a grid, using the fast winding number algorithm [1].
We use logic from the BAE-NET code to turn these query
point inside-outside values into a voxelization for each shape
(used as input to an encoder) and paired (point, value) data
used to train the implicit decoder.

BAE-NET has two training modes: supervised and un-
supervised training. Supervised training can only be run on
shapes that come with semantic labels. In the original BAE-

NET implementation, 3000 warm-up epochs are run over the
full supervised learning set (all shapes that contain labels),
then unsupervised shapes are integrated. After the warm-up
phase, after every 4 unsupervised training updates, BAE-
NET makes a supervised learning update for every shape
instance in the supervised set. We employ this paradigm
in the low-data regimes (10/40 labeled data instances). In
plentiful labeled data regimes, this strategy is prohibitively
slow, so we instead make one full pass through both the
unsupervised and supervised examples for each epoch after
the warm-up period.

D.2. LEL

Our label-efficient learning variant utilizes the shape re-
gion based self-supervised training scheme proposed in [7].
In their experiments, they source shape region decomposi-
tions from an ACD method. In our experiments, we use
shape region decompositions provided by PartNet. Follow-
ing their method, we modify the PointNet++ used in the
PartNet variant to include an additional linear layer, that
consumes the last per-point feature and outputs a 128 dimen-
sional per-point embedding. The self-supervised loss en-
couraging per-point embeddings to cluster to similar parts of
space is then implemented with code from the label-efficient
learning paper.

D.3. LHSS

We follow the implementation provided by the method’s
authors whenever possible [13]. We directly use their Julia
code that consumes input meshes in order to generate the
per-point features. We re-implement their neural network
in PyTorch, following all hyper-parameters as described in
their released torch code. To solve the MRF formed by per-
shape-region unary terms and paired terms that correlate

LHSS

Input Regions PartNet NGSP GT

Figure 2. Additional qualitative results for ‘in the wild’ shapes.

to label distances within the grammar hierarchy, we use
the alpha-expansion algorithm from the publically available

Train Chair Lamp Table Storage Vase Knife

10 Labeled 1000 1000 1000 1000 1000 404
GCO package [2]. 40 Labeled 1000 1000 1000 1000 1000 374
400 Labeled 1000 1000 1000 1000 652 175

D.4. Converting Per-Atom Predictions to Per-
Region Predictions

As mentioned in the main paper, some methods make per-
point predictions, e.g. they predict a semantic label for each
point in the input point cloud (PartNet, BAE-NET, LEL). For
a fair comparison against NGSP and LHSS, which assign la-
bels to shape region, for methods appended by (R) we group
per-atom predictions into per-region predictions. To do this,
we first compute the probability distribution over labels for
each point (e.g. send the logits through a softmax). Then
we group points based on the shape regions, and for each
shape region we find the region label probability distribution
by average all of the per-point label probability distributions.
We then take the arg max of the region label probability
distribution as the chosen label assignment for that shape
region.

D.S. Unlabeled Additional Shape Instances

Some comparison methods (BAE-NET and LEL) are able
to use shape instances that lack label annotations, but contain
shape region decompositions. For fair comparison, we allow
these methods to train on up to 1000 additional shapes where
the shape region decomposition is provided, but the semantic
label annotations are withheld. We source these unlabeled
shapes from PartNet instances that do not show up in the
labeled training, validation or test sets. For some number of
labeled training data + category combinations, there are not
enough shape instances in PartNet to reach 1000, in which
case we use as many shapes as there are available. Table 2

Table 2. Number of additional unlabeled shape instances used by
BAE-Net and LEL comparison methods, for each category, and
each number of labeled training data used during training.

contains how many unlabeled shape instances are used by
BAE-NET and LEL for each number of labeled training data
+ category combination.

E. Inference Run-Time

As demonstrated, NGSP outperforms comparison meth-
ods on the task of semantic segmentation. This performance
improvement comes at the cost of an increase in the time it
takes to produce semantic segmentations; NGSP does not
operate in an end-to-end fashion, but rather performs approx-
imate MAP inference. This search is directed by the neural
guide network, which proposes a constrained set of label as-
signments that are then considered under the full likelihood
model; evaluating more proposals will result in a better MAP
estimate, but incurs more computation time. This trade-off
is controlled with the hyper-parameter k, the number of pro-
posals generated from the guide network. When £ is set
to 1, the performance is equivalent to just using the guide
network (from the ablation table main paper). The time it
takes NGSP to generate a semantic segmentation for an av-
erage chair is 0.2 seconds when k£ = 10, 0.3 seconds when
k = 100, 0.8 seconds when £ = 1000, and 4 seconds when
k = 10000. For all results, we set k to 10000, allowing us

to well-approximate the MAP, while keeping computational
time manageable.

F. Additional Qualitative Results

We present additional qualitative results comparing dif-
ferent methods on the task of fine-grained semantic segmen-
tation of Partnet shapes for Chairs (Figure 3), Tables (Figure
4), Lamps (Figure 5), Vases (Figure 6), Knives (Figure 7)
and Storage Furniture (Figure 8).

Each figure additionally contains the semantic grammar
we use. All shape grammars we use are derived from the
hierarchies defined by PartNet. In most cases these labels
corresponds to the level-2 granularity in PartNet. For some
shapes, where level-2 was not defined, level-3 was substi-
tuted. For all terminal labels that are present in the depicted
qualitative examples, we color the background text of the
terminal label to match the color of semantic part in the
qualitative renders. The input region column is given purely
random colors, such that each shape region is given a unique
color.

References

[1] Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin,
and Alec Jacobson. Fast winding numbers for soups and
clouds. ACM Transactions on Graphics, 2018. 4

[2] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-
mate energy minimization via graph cuts. [EEE Trans. Pattern
Anal. Mach. Intell., 23(11):1222-1239, nov 2001. 5

[3] Xavier Bresson and Thomas Laurent. Residual gated graph
convnets. arXiv preprint arXiv:1711.07553,2017. 2

[4] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An Information-Rich 3D Model Repos-
itory. arXiv:1512.03012, 2015. 3, 4

[5] Zhigin Chen, Kangxue Yin, Matthew Fisher, Siddhartha
Chaudhuri, and Hao Zhang. Bae-net: Branched autoencoder
for shape co-segmentation. Proceedings of International Con-
ference on Computer Vision (ICCV), 2019. 4

[6] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking graph
neural networks. arXiv preprint arXiv:2003.00982, 2020. 2

[7] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma,
Evangelos Kalogerakis, Liangliang Cao, Erik Learned-Miller,
Rui Wang, and Subhransu Maji. Label-efficient learning on
point clouds using approximate convex decompositions. In
European Conference on Computer Vision (ECCV), 2020. 4

[8] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust water-
tight manifold surface generation method for shapenet models.
arXiv preprint arXiv:1802.01698, 2018. 4

[9] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tri-
pathi, Leonidas J. Guibas, and Hao Su. PartNet: A large-scale
benchmark for fine-grained and hierarchical part-level 3D
object understanding. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 1

[10] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 1

[11] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural information
processing systems, pages 5099-5108, 2017. 1

[12] Erik Wijmans. Pointnet++ pytorch. https://github.
com/erikwijmans/Pointnet2_PyTorch, 2018. 1

[13] Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G. Kim,
Hao Su, and Ersin Yumer. Learning hierarchical shape seg-
mentation and labeling from online repositories. SIGGRAPH,
2017. 4

https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch

Input Regions PartNet (R) BAE-NET (R) LEL (R) LHSS NGSP GT

BEOT DD
22222 2E

SscLoeLd

Chair — arm; back; base; head; seat; footrest

A —» [GORREGIO: holistic frame : horizonl b’ : ERRNGRRERIBAR: 1 v1c: ARG GbIE
back — SRR [: SO0 uriscc

Base — foot base; pedestal base; regular leg base; star leg base
Head — connector; headrest

Seat — frame ; support ; surface
Footrest — base; footrest seat

Foot Base — foot
Pedestal Base — central support; pedestal

Regular Leg Base — _; foot; leg ; -; runner
Star Leg Base — _; mechanical control; -

Footrest Seat — support ; surface

Figure 3. Qualitative Results and Grammar for the Chair category.

Input Regions PartNet (R) BAE-NET (R) LEL (R) LHSS NGSP GT

—_—
—_—

R R R R e

Table — game table; picnic table; regular table

Game table — ping pong table; pool table

Picnic table — bench; bench connector; regular picnic table
Regular table — regular base; regular tabletop

Ping pong table — -; ping pong base; ping pong tabletop
Pool table — ball; pool base; pool tabletop

Regular picnic table — picnic base; picnic tabletop

Regular base — drawer base; pedestal base; regular leg base; star leg base;
Regular tabletop — -; frame ; -

Ping pong base — ping pong regular leg base

Ping pong tabletop — ping pong surface

Pool base — pool regular leg base

Pool tabletop — frame; surface

Picnic base — picnic regular leg base

Picnic tabletop — surface

Drawer base — _ bottom panel ; _ caster ;

; foot ; keyboard tray; - leg ; _,
vertical d1v1der panel ; _; vertical side panel
Pedestal base — central support; pedestal ; tabletop connector
Regular leg base — _; caster; _; -; -; runner ; _
Star leg base — central support; star leg set
Ping pong regular leg base — bar stretcher;

Picnic regular leg base — leg
Pool regular leg base — leg

Figure 4. Qualitative Results and Grammar for the Table category.

Input Regions

]

PartNet (R) BAE-NET (R) LEL (R) LHSS NGSP

3 3 3 a

Lamp — ceiling lamp; street lamp; table or floor lamp; wall lamp
Ceiling lamp — chandelier; pendant lamp

Street lamp — post ; street unit; ' street base

Table or floor lamp — ToF base; ToF body; ToF unit; ToF power cord
Wall lamp — wall base; body; wall unit

Chandelier — -; chandelier base; - ; chandelier unit group
Pendant lamp — pendant base; pendant unit; pendant power cord

Street unit — [J&fN;
ToF base — ToF holistic base; ToF leg base

ToF body — jointed ; solid ; pole ; vertical panel

ToF unit — |CoRNecton; [l 'head

ToF power cord — cord

Wall base — wall holistic base

Wall unit — |iiiill; fhead|

Chandelier base — chandelier holistic base
Chandelier unit group — chandelier unit
Pendant base — pendant holistic base
Pendant unit — -; head

Pendant power cord — cord

ToF holistic base — base part

ToF leg base — -

Wall holistic base — | base part
Chandelier holistic base — base part
Chandelier unit — [iill]; head

Pendant holistic base — -

Figure 5. Qualitative Results and Grammar for the Lamp category.

Input Regions PartNet (R) BAE-NET (R) LEL (R) LHSS

LRI
EEEE
cesee

Vase — base; body; containing things
Base — foot base

Body — |CORGMeH.; lid
Containing things — _; -

Foot base foot

Figure 6. Qualitative Results and Grammar for the Vase category.

Input Regions PartNet (R) BAE-NET (R) LEL (R) LHSS NGSP GT

Knife — dagger; cutting instrument

Dagger — dagger blade side; dagger handle side

Cutting instrument — cutting instrument blade side; cutting instrument handle side
Dagger blade side — blade

Dagger handle side — -; -; handle

Cutting instrument blade side — |blade ; -
Cutting instrument handle side — -; -; handle

Figure 7. Qualitative Results and Grammar for the Knife category.

Input Regions PartNet (R) BAE-NET (R) LEL (R) LHSS NGSP GT

-

Storage Furniture — base; -; frame; _; drawer; -

Base — foot base ; panel base

Frame — ; bottom panel ; horizontal bar ;_; -;
; vertical front panel ; vertical side panel

Drawer — drawer box; handle
Drawer Box — back; bottom; front ; side

Figure 8. Qualitative Results and Grammar for the Storage Furniture category.

	. Data Details
	. Data Preprocessing
	. Creating Dataset Splits
	. Region Corruption

	. Training Details
	. Training Hyperparameters
	. Semantic Label Negative Sampling Strategies
	. Differentiating Geometry and Layout Networks
	. Region Graph Creation

	. Perceptual Study
	. Comparison Method Implementation Details
	. BAE-NET
	. LEL
	. LHSS
	. Converting Per-Atom Predictions to Per-Region Predictions
	. Unlabeled Additional Shape Instances

	. Inference Run-Time
	. Additional Qualitative Results

