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A. Experimental Details
A.1. Single-modal Translation

For implementing single-modal image translation, we
modified the official source code of CUT [6]1. Specifi-
cally, instead of PatchNCE in CUT, we use our proposed
loss Lsemantic which includes Decoupled infoNCE with
hard negative LhDCE and semantic relation consistency
loss LSRC . The model architecture is identical for fair com-
parison.

We introduce the loss functions to train the networks.
Firstly, our GAN loss is as follows:

LGAN = Ey∼pY
[logD(y)] + Ex∼pX

[log(1−D(G(x)))] ,

where G is the generator and D is the discriminator, and
pX and pY are the data distributions for source and target
domain, respectively.

Then, we calculate the proposed loss using the embedded
features for L intermediate layers. Specifically, for each l-
th layer, the intermediate features of input x and translation
output yfake (i.e. yfake = G(x)) is projected by the pro-
jection head F l. Then, we sample 256 embedding vectors
zlk and wl

k(i.e. K = 256) from the projected features zl and
wl, which are formalized as:{

zlk
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k=1
∼ zl = F l(Gl

enc(x)){
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}K

k=1
∼ wl = F l(Gl

enc(yfake)),

where Gl
enc(x) refers the l-th layer feature of the encoder,

which is a part of the generator. Gl
enc(yfake) is the feature

of the output. Then, the loss of the proposed method is
given by

Lsemantic,X→Y (λhDCE , λSRC , γ, τ)

=

L∑
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λSRCLSRC(
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1https://github.com/taesungp/contrastive-unpaired-translation

Dataset λSRC λhDCE τ Γo

H→Z 0.05 0.1 0.07 50
city 0.1 0.1 0.07 50

Table 1. Hyperparameters for each dataset. H→Z refers to
Horse→Zebra dataset. city refers to Cityscapes dataset.

where each loss is calculated as suggested in the main paper.
Similarly, we calculate the loss for the real image yreal

from target domain and the identity image yidt = G(yreal)
by the generator G. Then, we obtain the embedding vectors,
which are formalized as:{

ul
k

}K

k=1
∼ ul = F l(Gl

enc(yreal)){
vlk
}K

k=1
∼ vl = F l(Gl

enc(yidt))

Then, we calculate the loss using the vectors from L inter-
mediate layers, which is as follows:

Lsemantic,Y→Y (λhDCE , λSRC , γ, τ)

=

L∑
l=1

λSRCLSRC(
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k

}K

k=1
,
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)

+ λhDCELhDCE(
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; γ, τ).

Finally, the total loss is given as:

Ltotal = LGAN + Lsemantic,X→Y (λhDCE , λSRC , γ, τ)

+ Lsemantic,Y→Y (λhDCE , λSRC , γ, τ)

The hyperparameters for each dataset is shown in the Table
1. Other training settings are same with the CUT [6], for a
fair comparison with the baseline.

For the curriculum learning with hard negative mining,
we gradually change the parameter γ as follows:

γ(t) = 1/Γ(t)

and
Γ(t) = Γo + (Γfinal − Γo) ·

t

T

1



where t is training step, and T is total number of epoch. For
Horse→Zebra datast, we use Γo as 50 and linearly decrease
into Γfinal = 10 at the last training step. For cityscapes
dataset, we set the initial value Γo as 50 and progressively
decreases into 30 until 200 epoch, then we fixed Γ(t) = 1
until final training step.

A.2. Multi-modal Translation

In the training procedure for the multi-modal translation,
all of the images have a resolution of 256×256. The total
training step is T = 100, 000, and we use the models with
best quantitative score during training.

For implementing multi-modal image translation, we
modified the official source code of StarGANv2 [2]2.
Specifically, the basic StarGANv2 consists of 4 different
networks: a discriminator D, generator G, style encoder
E, and latent mapping network M . Since we experimented
our method on the dataset which mostly consists of scenery
images, we used the modified version of generator model
which has two downsample layers (until resolution 64×64)
and 4 bottleneck layers, 4 bottleneck layers with AdaIN,
and two upsample layers with AdaIN.

For feature embedding, we select the intermediate fea-
tures of bottleneck layers without AdaIN (i.e. L = 4). Sim-
ilar to the single-modal image translation, we project each
l-th layer feature using the projection head F l. We sample
256 vectors (i.e. K = 256) for the features of input x and
translated output G(x, ŝ), where ŝ is the style code gener-
ated from a random vector. Then, the embedded vectors are
formalized as:

{zlk}Kk=1 ∼ zl = F l(Gl
enc(x))

{wl
k}Kk=1 ∼ wl = F l(Gl

enc(G(x, ŝ)),

where Gl
enc represents l-th feature of the encoder part in the

generator model.
Now, we introduce the loss functions to train the net-

works. First, to generate realistic images, we use GAN loss
which is as follows:

Ladv = Ex,y[logDy(x)] + Ex,ŷ,z[log(1−Dŷ(G(x, ŝ))],

where y is an one-hot label for the domain of the input
x, and ŷ is a target domain one-hot label. The style code
ŝ = Mŷ(z) is a style code for the target domain ŷ, which
is generated by M from a random vector z Then, the cyclic
losses for the style code and the output image are added as
following:

Lsty = Ex,ŷ,z[||ŝ− Eŷ(G(x, ŝ))||1]
Lcyc = Ex,y,ŷ,z[||x−G(G(x, ŝ), s̃)||1]

2https://github.com/clovaai/stargan-v2

Dataset λadv λsty λcyc λds λSRC λhDCE

Seasons 1 1 1 2 0.1 1
Weather 1 1 1 2 0.1 0.1

Table 2. Hyperparameters for multimodal image translation.

where s̃ = Ey(x) is predicted style code for the input x.
Furthermore, the diversity sensitive loss is imposed to gen-
erate images with diverse styles.

Lds = Ex,ŷ,z1,z2 [||G(x, ŝ1)−G(x, ŝ2)||1]

where z1 and z2 are two independently sampled random
vectors, and the style codes are generated as ŝ1 = Mŷ(z1)
and ŝ2 = Mŷ(z2).

Finally, we add our proposed loss function to utilize the
patch-wise semantic relation. As in the single-modal image
translation, the proposed loss Lsemantic is as follows:

Lsemantic(λhDCE , λSRC , γ, τ)

=

L∑
l=1

λSRCLSRC(
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zlk
}K

k=1
,
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wl

k

}K

k=1
)

+ λhDCELhDCE(
{
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}K
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,
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wl
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}K

k=1
; γ, τ)

Hence, the final loss function is,

Ltotal = λadvLadv + λstyLsty + λcycLcyc

− λdsLds + Lsemantic(λSRC , λhDCE , τ, γ)

Similar to the single-modal I2I framework, τ is fixed
as 0.07. Also, we gradually increase the γ with reciprocal
function given as,

γ(t) = 1/Γ(t)

and
Γ(t) = Γo + (Γfinal − Γo) ·

t

T

where t is training step, and T is total number of epoch.
For both datasets, we set Γo as 50, and Γfinal as 1. Other
training settings are identical to the baseline [2] for both
datasets.

The detailed hyperparameter settings are in Table 2.

A.3. GAN compression

We used the Fast GAN compression framework [5] along
with our loss functions for hDCE and SRC. The training
stage consists of two steps: the first step is training the stu-
dent model, and the second step is searching the optimal
channel configuration by evolution search algorithm. We
transferred the semantic relational knowledge in the first
step of the training.



We introduce the loss functions to train the student
model. As introduced in [5], pretrained teacher discrimi-
nator D is used to guide the student model Gs. The GAN
loss function for the student Gs is as following:

LGAN = Ey∼pY
[logD(y)]+Ex∼pX

[log(1−D(Gs(x)))]

where pX is the distribution for the input domain, and pY
is for the target domain. Then, the distillation loss imposes
the layer-wise feature matching between the teacher Gt and
the student Gs. The channel configuration is different be-
tween the student model and the teacher. Hence, for each
l-th layer, a network fl is used to map the student’s feature
to have the same number of channel with the corresponding
teacher’s feature. The distillation loss is calculated as:

Ldistill =

L∑
l=1

||fl(Gl
s(x))−Gl

t(x)||2

where Gl
s(x) refers the intermediate feature from l-th layer

of the student model for input x. Gl
t(x) represents the fea-

ture from the teacher model. L is the total number of the
intermediate layers for the distillation. Additionally, the
outputs of the teacher and the student are matched by the
reconstruction loss formulated as:

Lrecon = ||Gs(x)−Gt(x)||1

Lastly, we transfer the patch-wise semantic relation
formed by the hard negative DCE loss, as our method pro-
poses. We applied our method for all L layers. For the
l-th layer features of the teacher and the student, we project
them with the shared projection head F l. Then, we sample
256 embedding vectors zlk and wl

k (i.e. K = 256) from the
projected features zl and wl, which is formalized as:

{zlk}Kk=1 ∼ zl = F l(Gl
t(x))

{wl
k}Kk=1 ∼ wl = F l(Gl

s(x)).

Then the proposed loss is given as:

Lsemantic =

L∑
l=1

λSRCLSRC({zlk}Kk=1, {wl
k}Kk=1)

+ λhDCELhDCE({zlk}Kk=1, {wl
k}Kk=1; τ, γ)

The γ is gradually increased in reciprocal function for
the curriculum learning. Specifically, γ is set as:

γ(t) = 1/Γ(t)

with
Γ(t) = Γo + (Γfinal − Γo) ·

t

T

where t is the training step and T is the total epoch. Γo and
Γfinal are set as 50 and 10 for all three datasets.

Dataset Model λrecon λdistill λSRC λhDCE

H→Z CyleGAN 10 0.01 10 0.1
M→S Pix2pix 10 0.01 10 0.1
city Pix2pix 100 1 10 0.1

Table 3. Hyperparameters for each dataset. H→Z refers to
Horse→Zebra dataset. M→S refers to Map→Satellite dataset.
city refers to Cityscapes dataset.

Figure 1. Projection head F l with elastic width for the GAN com-
pression task. l-th layer features Gl

s(x) and Gl
t(x) are projected

into embedding vector zl and wl with same size for the hDCE loss.
For the student, only the subset of weight is used.

In summary, the final loss function to train the student
model is,

Ltotal =LGAN + λdistillLdistill + λreconLrecon

+ Lsemantic(λSRC , λhDCE ; γ, τ)

where τ is fixed as 0.07. By the proposed loss, the student
model additionally leverages the relational information and
shows improved performance.

As shown in Table 3, the training settings for baseline
loss functions are identical to the original work [5] for a fair
comparison.

Retrained teacher and student: Since our retrained
teacher models performed slightly different from the results
reported in the original work [5], we compressed the
retrained teacher models for a fair comparison. Hence, we
also retrained all the corresponding student models by the
baseline method and compared with our proposed method.

Projection heads for model compression task:
For the single-modal and multi-model image translation
tasks, shared projection heads are used to project the input
feature and the output feature. However, in case of model
compression task, the number of channels for intermediate
features are different for the teacher model and the student
model.

Hence, inspired by the once-for-all network [1], we im-
plement the projection head consists of two linear layers
with elastic width and the ReLU activation between the lay-
ers. Specifically, only a subset of the weight parameters are



Figure 2. Qualitative comparison on high resolution single image translaton. Our method shows photorealistic output with less distortion
in content information.

used when the student feature is input to the network, as
shown in the Fig. 1.

B. High-resolution single image translation

We evaluate the proposed method for the high reso-
lution single image translation, which translates a single
high-resolution painting image to a natural photograph.
We followed the experimental protocols in the previous
works [6, 9] for a fair comparison.

Experiment Settings: The input image is a Claude
Monet’s painting with 1200×966 size, and the target image
is natural photograph with 1024×768. Following the
settings in the [6, 9], randomly cropped image patches with
64×64 size are used for the training.

The implementation is based on the offcial code of Sin-
CUT [6]3. We replaced the patchNCE loss with our pro-
posed hDCE loss and SRC loss. Following SinCUT, the
gradient penalty term LR1 is added to the loss function for
the single-modal image translation task. LR1 penalize the
gradient of the discriminator D, which stabilize the train-
ing [6]. LR1 is given as,

LR1 = Ey∼pY

[
||∇D(y)||2

]
where y refers the image of the target domain. Hence, the
total loss function is given as

Ltotal = LGAN (G,D,X, Y ) + λR1LR1

+ Lsemantic,X→Y + Lsemantic,Y→Y

where the terms except LR1 are same with the loss functions
of single-modal image translation. The hyperparameters are
defined as following: λR1=1, λhDCE=4 and λSRC = 10.

The γ is reciprocally increase for each training epoch t
as following:

γ(t) = 1/Γ(t)

3https://github.com/taesungp/contrastive-unpaired-translation

Number
of Neg.

H→Z Cityscapes

FID↓ mAP↑ pAcc↑ cAcc↑ FID↓

64 39.4 27.0 72.4 33.6 50.1
128 35.4 27.8 73.3 34.4 48.9
512 38.0 28.6 73.4 34.3 50.4
256 34.4 29.0 73.5 35.6 46.4

Table 4. Additional ablation studies on single-modal image trans-
lation on the number of negative samples.

with

Γ(t) = Γo + (Γfinal − Γo) ·
t

T

where Γo = 200 and Γfinal = 40. T is total training epoch.
We compare our method with the related works, which

are FSeSim [9], CUT [6], STROTSS [4], WCT2 [8] and
Gatys et al. [3].

Results: The Fig. 2 show the qualitative comparison
between the proposed method and the previous methods.
The proposed method outputs more photorealistic image
compared to the Gatys et al., STROTSS and WCT2 . Also,
compared with CUT and F-Sesim, our method shows better
correspondence with the input image, showing less distor-
tion in the shape of objects of the input image. Specifically,
the shape of the cliff is preserved in our method, whereas
CUT and F-Sesim show severe distortion. The results
confirm that the proposed method is effective to preserve
the content information, regularizing the consistency of
semantic relation between the input and output.

C. Additional ablation study

C.1. Loss ablation

Single-modal image translation: We conduct the ex-
periments to check the effect of the number of negative
samples. As shown in Table 4, the results are not dramati-
cally affected by the number of samples, but we observed a
slight performance drop when different number of negative
samples are used.



Settings Latent Reference
InfoNCE DCE SRC Hard Neg FID↓ LPIPS↑ FID↓ LPIPS↑Loss Loss Loss Mining

× × × × 63.06 0.413 61.19 0.346
✓ × × × 59.02 0.437 61.62 0.300
× ✓ × × 58.43 0.496 59.19 0.317
✓ × ✓ × 57.15 0.483 57.29 0.304
× ✓ × ✓ 58.18 0.495 59.34 0.317
× ✓ ✓ × 57.86 0.484 58.99 0.325
✓ × ✓ ✓ 55.91 0.471 55.37 0.347
× ✓ × ✓ 58.18 0.495 59.34 0.317
× ✓ ✓ ✓ 54.70 0.496 54.23 0.365

Table 5. Quantitative results of ablation studies on multimodal
image translation tasks. All models are trained on Seasons dataset.

Settings H→Z (CycleGAN)
DCE SRC Hard Neg #Param↓ MACs↓ FID↓Loss Loss Mining

Teacher 11.378M 56.80G 59.46
Baseline Student 0.412M 2.962G 74.39

✓ × × 0.459M 2.942G 67.28
× ✓ × 0.412M 2.862G 66.20
✓ ✓ × 0.412M 2.962G 65.91
✓ × ✓ 0.450M 2.960G 65.49
✓ ✓ ✓ 0.412M 2.962G 64.64
Seperate Projection Head 0.412M 2.962G 78.63

Table 6. Quantitative results of ablation studies on GAN compres-
sion. H→Z represents Horse→Zebra.

Multimodal image translation: We also present an
ablation study on the loss functions for the multi-modal
image translation task. Due to the limited resources, the
ablation study focuses on the Seasons dataset.

Table 5 shows the results of the ablation study on our
proposed loss components. We obtain the best results
in both of latent-guided and reference-guided synthesis
when all of the proposed components are used. For further
specification, when we only use the contrastive loss, the
results are slightly improved compared to the baseline
model. With an addition of the SRC loss, the model shows
more improved result in FID scores. Finally, when all
the components are used, we obtain the best quantitative
scores in both of FID and LPIPS. Furthermore, in overall
experiments, the models trained with DCE loss shows
better quantitative results than the models trained with
basic InfoNCE losses.

GAN compression: To verify our proposed compo-
nents on GAN compression framework, we experimented
Fast GAN compression with various settings. As a repre-
sentative model and dataset, we used CycleGAN trained
with the Horse→Zebra dataset for the ablation study.
Table 6 is the quantitative results of our ablation study.
Each loss component contribute to the improvement of
the performance, showing the best FID score when all
components are used. Although several models show better

compression rate especially for MACs, but the difference is
negligible. Considering both compression rate and image
quality scores, we obtain the best results when all of the
components are used together.

C.2. Separated projection for GAN compression

The intermediate features of the teacher and the student
have different channel configuration. In the Section A.3,
shared projection head with elastic width is suggested as a
remedy. In this section, we conduct the additional exper-
iment using two seperate projection heads, one is for the
student and the other is for the teacher. Then, the embed-
ding vectors zlk and wl

k from the teacher and the student is
formalized as,

{zlk}Kk=1 ∼ zl = F l
t (G

l
t(x))

{wl
k}Kk=1 ∼ wl = F l

s(G
l
s(x))

where the F l
t and F l

s are the projection heads for the l-
th layer features from the teacher model and the student
model. The channel width of the projection heads are fixed,
as shown in the Fig. 3.

Figure 3. Projection head F l
t and F l

s with fixed width for the
teacher and the student. The parameters of the projection heads
are not shared between the teacher and the student. (i.e. F l

t and
F l
s are updated independently.)

As shown in the Table 6, the separate projection heads
do not improve the performance compared to the baseline.
Since different projection heads are used for the teacher and
the student, the features from each model are projected into
different embedding spaces. Hence, the consistency of the
relational knowledge or the contrastive loss do not give any
benefits to the performance.

C.3. SRC loss

Consistency regularization can be imposed by vari-
ous form of functions. In the main script, we used the
Jensen-Shannon divergence (JSD) loss for the consistency
regularization. In this section, we conduct the ablation
study on the loss, replacing the JSD function with other
functions such as L1 loss, L2 loss and Kullback-Leibler
(KL) divergence function. The ablation study is pro-
ceeded on the single-modal image translation task using the



Figure 4. Ablation study for the function of SRC loss. Query points are marked with the red dots in the images. The query points are at
the front leg in the first image, and the head in the second image. JSD loss outperforms other functions with an improved FID score, along
with the enhanced consistency of the similarity relation.

Horse→Zebra dataset. For a fair comparison, the training
settings are identical.

Now, we introduce the loss functions for the ablation
study. We denote the {zk}Kk=1 and {wk}Kk=1 as a set of the
K embedded vectors for the input and translation output.
Then, the SRC loss by L1 loss function is as follows,

LSRC,L1 =

K∑
k=1

∑
j ̸=k

||z⊤k zj − w⊤
k wj ||1

Similarly, SRC loss with L2 loss function is given as,

LSRC,L2 =

K∑
k=1

∑
j ̸=k

||z⊤k zj − w⊤
k wj ||22

Lastly, SRC loss with KL divergence function is as,

LSRC,KL =

K∑
k=1

KL(Pk||Qk)

where Pk and Qk are the distribution of similarity relation
for the input embedding vector {zk}Kk=1 and the output vec-
tor {wk}Kk=1, as introduced in the main script.

Fig. 4 shows the similarity relation between the query
point and the other locations. We observe that the losses
contribute to the consistency of the similarity relation, with

Settings H→Z Cityscapes
FID↓ mAP↑ pAcc↑ cAcc↑ FID↓

γ = 0.02 38.5 28.0 72.5 34.1 48.9
γ = 0.1 37.1 27.2 71.7 33.3 51.49
γ = 1 37.5 18.0 57.0 24.9 102.3

Curriculum 34.4 29.0 73.5 35.6 46.4

Table 7. Ablation studies on parameter γ.

showing the similar appearance between the similarity maps
of the input and the output.

The JSD loss, in particular, improves the consistency the
most compared to the other functions. The difference be-
tween the maps is much less for the JSD loss, compared to
the other loss functions which obviously shows some dis-
crepancy between the input similarity map and the output
similarity map. The FID scores also support the superiority
of JSD function against other losses.

C.4. Hyperparameter γ

Our method explicitly controls the hardness of the neg-
ative mining using γ, compared to the NEGCUT [7] which
implicitly controls the hardness using the negative gener-
ator. In this section, we investigate the effect of γ to the
performance, and claim the risk of implicit control of the
hardness for the negative mining.

As shown in the Table 7, the hardness largely affect the
performance. The performance is best when the curriculum



learning is applied. Also, it is notable that the failure of the
training is observed when the negative mining is too hard
(i.e. large γ). Hence, the implicit control of the hardness
may induce the degradation of the performance by imposing
inappropriate hardness for the negative mining.

D. Additional Results

We provide additional results for the three tasks intro-
duced in the main script: single-modal, multi-modal image
translation tasks and GAN model compression.

For single-modal image translation, we show the addi-
tional results for the Horse→Zebra dataset in Fig. 5, and for
the Cityscapes dataset in the Fig. 6. For multi-modal im-
age translation, we show the results in Fig. 7, 8 for Seasons
dataset, and Fig.9,10 for Weather dataset. The input images
are translated into multiple domain classes, considering the
style of reference images. Fig. 11 shows the additional re-
sults for the GAN compression tasks on the Horse→Zebra,
Map→Satellite and Cityscapse datasets.

E. Additional Datasets

We further provide results for the single-modal im-
age translation tasks on the additional datasets with
true label: GTA→Cityscapes, Map→Satellite. For
Map→Satellite, the hyperparameters are identical with the
case of Horse→Zebra dataset. For GTA→Cityscapes, the
hyperparameters are identical to the Cityscapes dataset
case, and we set the total training epoch as 10, and followed
the experimental settings in [6].

Our method outputs better quality of images along with
the improved metric scores. For Map→Satellite dataset, the
FID score is improved to 45.15, compared to the baseline
[6] with 53.12. For GTA→Cityscapes dataset, our method
improve the pixel accuracy score as 58.9, compared to the
baseline [6] with 54.9. We evaluated the methods using the
pretrained DRN model for the segmentation of Cityscapes
dataset. The quality of the output images supports the quan-
titative evaluation, as shown in Fig.12, 13.

F. Limitation and Potential negative impact

Even though the hard negative mining in the proposed
method showed its effectiveness, an excessive strength of
the hardness in the early training stage may cause the insta-
bility of the training procedure. Hence the strength of the
hardness should be carefully selected. Likewise, the cur-
riculum learning which controls the strength of the hard-
ness should be carefully planned, considering the character-
istic of the dataset and the network architecture. Finally, the
approximation for the qNPC in the Section 3.3 only works
when the algorithm correctly converges, so that the approxi-
mation should be used carefully only to reveal the important

of the patch-wise semantic relationship rather than deriving
a new algorithm.

Regarding on the social impact, as most of image gen-
eration methods shares, the generator in the proposed work
may produce a social disinformation by creating realistic
fake images. Also, the generative model has potential risk
of adversarial attack.
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Figure 5. Additional results for single-modal image translation model trained on Horse→Zebra dataset.



Figure 6. Additional results for single-modal image translation model trained on cityscapes dataset.



Figure 7. Additional results for multi-modal image translation model trained on Seasons dataset. Our method can translate the input images
into multiple domain outputs with reflecting the reference style images.



Figure 8. Additional results for multi-modal image translation model trained on Seasons dataset. Our method can translate the input images
into multiple domain outputs with random styles.



Figure 9. Additional results for multimodal image translation model trained on Weather dataset. Our method can translate the input images
into multiple domain outputs with reflecting the reference style images.



Figure 10. Additional results for multimodal image translation model trained on Weather dataset. Our method can translate the input
images into diverse multiple domain outputs with random styles conditioned on each season.



Figure 11. Additional results for GAN model compression for image translation tasks. Our method outputs better quality of images along
with the improved metric scores (FID, mIOU) and the model size.



Figure 12. Additional results for single-modal image translation model trained on GTA → Cityscapes dataset.



Figure 13. Additional results for single-modal image translation model trained on Map → Satellite dataset.


