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Supplementary Materials
We include additional materials in this document. We first state our societal impact, dataset license, limitations and ethical

concerns in the beginning. We provide additional related works for biases in machine learning in Appendix B and a detailed
proof of our propositions in Appendix A. We include our implementation details, such as architecture, optimization, hyper-
parameter search and base fairness methods and their modifications in Appendix C. We provide the additional analysis of
group classifiers in Appendix D, experimental results in Appendix E and result tables in Appendix E.5.

Dataset license. In the paper, we use four datasets: UTKFace [36], CelebA [23], ProPublica COMPAS [18] and FairFace
[20]. According to the official web page1, UTKFace dataset is a non-commercial license dataset where the copyright belongs
to the original owners in the web. The dataset is built by Dlib [21] and annotations are tagged by the DEX algorithm and
human annotators. CelebA dataset has a similar license statement2 to UTKFace. COMPAS dataset is collected its data points
from Broward County Sheriff’s Office in Florida3 which is a public records. FairFace is licensed by CC by 4.04. Overall, all
datasets have clean licenses that is applicable to any public research project.

Societal impact. As we stated in the main text, a vanilla DNN training can occur negative societal impacts by dismissing
fairness criterion, on the other hand, considering fairness criterion at the training time requires a huge number of group labels.
We expect our CGL can bridge the gap between real-world applications and fairness-aware training, so that mitigating the
negative societal impacts economically by only annotating a subset of group-unlabeled samples.

Limitations. Although our method can be applied to any fairness method, we observe that CGL is not always better than
other baselines. First, our method relies on the quality of group classifier, hence, if the group classifier performs worse, our
method does not guarantee better fairness than the vanilla pseudo-labeling. Also, the group classifier predictions can be noisy.
In Appendix, we show group prediction accuracy of our group classifier. In the low group label regime, the accuracy of our
classifier decreases to less than 80% on UTKFace. This implies that if the base method is sensitive to noisy group labels
(e.g., Adversairal De-biasing), our method and pseudo-labeling can perform worse than our expectation. Finally, in the case
that a distribution shift for the sensitive attribute exists when predicting group labels of group-unlabeled data from group-
unlabeled data, the naive application of would suffer from performance degradation. These distribution shift can be alleviated
by training a group classifier with robust optimization techniques (e.g., choosing a distribution shift-aware optimizer [5],
invariant risk minimization [1] or group distributed robust optimization [28]).

Ethical concerns We originally used a subjective and potentially unethical “Attractive” attribute in our experiments with
the CelebA dataset. It is known that “Attractive” is highly correlated to gender (“Male”), while most other attributes are
not [32]. Our purpose of CelebA experiments is to show the scalability of our method as CelebA (200K) is a large-scale
dataset compared to UTK (20K), COMPAS (5K), Adult (40K). From a similar motivation, many previous studies employed
Attractive as their target label [6, 19, 25, 26]. Particularly, Quadrianto et al. used Attractive “as the proxy measure of getting
invited for a job interview in the world of fame“ [26]. However, we agree that using a subjective attribute as “Attractive” can

1https://susanqq.github.io/UTKFace/
2https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
3https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
4https://github.com/joojs/fairface
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be unethical. We only used the results as an example, and we alert that such classifiers for attractiveness can cause potential
ethical concerns.

A. Proof of propositions
A.1. Proof of Proposition 1

Proof. We only show only the case where P (A = 1|X = x, Y = y) ≥ 0.5 and the opposite case can be proved in the same
way. For any classifier f and all x ∈ {x|f(x) = 1 and 0.5 ≤ P (A = 1|X = x, Y = y) < τ}, we have from P and P̂ defined
in (Eq. (3) and (4), manuscript),

∆(x, y) =
( 1

P (A = 1|Y = y)

)
P (X = x|Y = y), (A.1)

∆̂(x, y) = 0. (A.2)

Then, we have

|∆(x, y)−∆(x, y)| − |∆(x, y)− ∆̂(x, y)| =

{
∆(x, y) if ∆(x, y) ≤ 0

∆(x, y)− 2∆(x, y) otherwise.
(A.3)

For the first case in Eq. (A.3), we can trivially see that ∆(x, y) > 0. For the second case in Eq. (A.3), we have

∆(x, y)− 2∆(x, y) (A.4)

=
(1− 2P (A = 1|X = x, Y = y)

P (A = 1|Y = y)
+

2P (A = 0|X = x, Y = y)

P (A = 0|Y = y)

)
P (X = x|Y = y) > 0 (A.5)

, if P (A = 1|X = x, Y = y) < P (A=1|Y=y)+1
2 . Therefore, we have the proposition 1 by setting τ to P (A=1|Y=y)+1

2 .

A.2. Proof of Proposition 2

Proof. Given a data distribution P (X,A, Y ) and a classifier f , ∆(f, P ) is defined as follows:

∆(f, P ) = T

(
max
a,a′

(
|P (Ŷ = y|A = a, Y = y)− P (Ŷ = y|A = a′, Y = y)︸ ︷︷ ︸

(a)

|
))

(A.6)

, where T (·) can be the maximum or average over y depending on the types of ∆. For each y, a and a′, the above argument
of maxa,a′ , (a) in Eq. (A.6), can be represented as follows:

(a) =
∑

x∈{x|f(x)=y}

P (X = x|A = a, Y = y)− P (X = x|A = a′, Y = y)

=
∑

x∈{x∈XL|f(x)=y}

P (X = x|A = a, Y = y)− P (X = x|A = a′, Y = y)

+
∑

x∈{x∈XU |f(x)=1}

P (X = x|A = a, Y = y)− P (X = x|A = a′, Y = y) (A.7)

Then, the second term of Eq. (A.7) can be represented as follows:∑
x∈{x∈XU |f(x)=y}

P (X = x|A = a, Y = y)− P (X = x|A = a′, Y = y)

=
∑

x∈{x∈XU |f(x)=y}

P (A = a|X = x, Y = y)P (X = x|Y = y)

P (A = a|Y = y)
− P (A = a′|X = x, Y = y)P (X = x|Y = y)

P (A = a′|Y = y)
(A.8)

If we substitute P (A|X,Y ) into P̂ (A|X,Y ) in the RHS of Eq. (A.8), we have the proposition 2.



Method Hyperparameter Candidates

MFD [19] MMD strength λ [10, 30, 100, 300, 1000, 3000, 10000, 30000]

FairHSIC [26] HSIC strength λ [1,3,10, 30, 100, 300, 1000, 3000]

LBC [17] Adversary strength α [1, 3, 10, 30, 100]
learning rate of adversary [10−4, 10−2]

Table C.1. Hyperparameter search spaces. We perform the grid search on the validation set to find the best hyperparameters for each
method. We use the same hyperparameters for optimizer (See Appendix C.1).

B. Additional Related Works for Biases in Machine Learning
Emerging studies on DNNs have revealed that DNNs rely on shortcut biases [2, 4, 11, 12, 29]. The existing de-biasing

methods let a model less attend on the dataset biases in an implicit way by using extra biased networks [2,4] or data augmen-
tations [12] without using bias labels. Both fairness methods and de-biasing methods aim to learn a representation invariant
to undesired decision cues, such as sensitive groups and dataset biases. However, de-biasing methods explore implicit short-
cut biases that harm the network generalizability, where many known shortcuts (e.g., language bias [4] or texture bias [12])
are neither strongly relative to ethical concerns nor easy to configure. On the other hand, in the fairness problem, sensitive
groups are diversely defined by the target application to avoid negative societal impacts (i.e., a model should make the same
predictions to any social group such as ethnicity or gender). Therefore, even though de-biasing methods can be applied to
Fair-PG by ignoring group labels, there is no guarantee to learn fair models by the de-biasing approaches. In this work, we
focus on fairness methods explicitly utilizing group labels for the base method of CGL.

C. More Implementation Details
C.1. Architecture and optimization

We choose the same architecture for the base classifier and the group classifier; ResNet18 [16] for the UTKFace and
CelebA experiments and a simple 2-layered neural network for the COMPAS experiments. On UKTFace and CelebA datasets,
we train the models with the Adam optimizer [22] for 70 epochs by setting the initial learning rate 0.001 reduced by 0.1 when
the loss is stagnated for 10 epochs following Jung et al. [19]. We train the model for 50 epochs on COMPAS dataset. All
results are reported by the model at the last epoch.

C.2. Hyperparameter search

In the experiments, there are two types of hyperparameters: the confidence threshold of CGL, and the method-specific
hyperparameters for each method. Since our method only needs the group-labeled training dataset for training group classifier
and seeking a threshold, we split the group-labeled samples into 80% training and 20% validation samples. The confidence
threshold is searched on the validation set (by Algorithm 1, manuscript).

Fairness-aware training methods are usually sensitive to the hyperparameter selection due to the accuracy-fairness trade-
off; when the strength for fairness is getting stronger, the target accuracy is getting worse. For example, a trivial solution
to achieve the fairest classifier is to predict all labels to a constant label, while this solution is the worst solution in terms
of the target accuracy. Hence, the careful tuning of the control parameters to fairness criteria (e.g., MMD [19], HSIC [26]
or adversarial loss [34]) takes the key role in handling the accuracy-fairness trade-off. In our experiments, we aim to find
a fair classifier while showing a comparable accuracy to the vanilla training method. Thus, we select the hyperparameter
showing the best fairness criterion ∆M while achieving at least 95% of the vanilla training model accuracy. We set the lower
bound to 90% for the COPMAS dataset. If there exists no hyperparameter achieving the minimum target accuracy, we report
the hyperparameter with the best accuracy. We perform the grid search on the hyperparameter candidates for every partial
group-label case and for every method. The full hyperparameter search space is illustrated in Tab. C.1.

C.3. Base fairness methods and their modifications

Here, we describe the overview of each base fairness method used for the experiments. MFD and FairHSIC use additional
fairness-aware regularization terms as the relaxed version of the targeted fairness criteria. MFD proposed a maximum-mean-
discrepancy-based [13] regularization term to achieve fairness via feature distillation and FairHSIC devised a HSIC-based
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Figure D.1. Group confidences verse sample densities. The number of samples for each confidence bin is shown. The red dotted line
denotes the selected threshold in the UTKFace experiments.

Table D.1. Group classifier performances. We compare the accuracies by the baseline decision rule (argmax) and by our method
(assigning random labels to low confident samples) for the trained group classifiers on the small group-labeled training samples.

Group-label ratio 80% 50% 25% 10%

Baseline 87.88 86.11 82.82 77.73
Ours 87.24 85.81 82.59 75.21
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Figure D.2. Comparisons with an “oracle” fair group classifier on UTKFace with MFD. The oracle classifier group classifier has the
same accuracy with our group classifier (used for “pseudo-label” and “CGL (ours)” – See Tab. D.1) but the wrong samples by the “oracle”
classifier are randomly chosen from the dataset.

[14] regularization term to obtain feature representations independent on group labels. For FairHSIC, we only implement the
second term of their decomposition loss (i.e., the HSIC loss between the feature representations and the group labels).

LBC is a re-weighting algorithm optimizing weights of examples through multiple iterations of full training to ensure their
theoretical guarantees. The original LBD requires multiple full-training iterations by alternatively computing a EO criterion
after full-training and re-training the full dataset by optimal weights. This alternative optimization needs a very huge training
budget. We modify the EO computation iteration to a few-epoch iterations, i.e., 5 epochs, instead of the full-training.

AD lets an adversary cannot predict group labels by the additional adversarial loss. In our experiments, AD shows little
improvements if the group or target label is not binary where Jung et al. [19] witnessed the same phenomenon. Thus, we
use multiple adversaries for AD to make AD be available to solve multi-class and multi-group problems following Jung et
al. [19] and omit the loss projection in the original objectives of AD for a stable learning. Also, we only report AD results for
the Compas dataset while AD does not perform well on other vision datasets.

D. Additional Analysis of Group Classifiers
Prediction confidences by our group classifier. In the main manuscript, we show the highest and lowest confident samples
by the group classifier on UTKFace in Fig. 7. As shown in the figure, low confident samples are qualitatively uncertain
to humans due to diverse lighting, various orientations and low quality, where Shi et al. observed the same results by an
uncertainty-aware face embedding [30]. From the qualitative results, we observe that our confidence-based threshold method
can reasonably capture the inherent uncertainty of the dataset without an explicit uncertainty-aware training, such as MC-
Dropout [10] or probabilistic embeddings [7, 24].
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(a) MFD results on Adult
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(b) MFD results on CelebA
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(c) FairHSIC results on Adult
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(d) FairHSIC results on CelebA
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(e) LBC results on Adult
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(f) LBC results on CelebA

Figure E.1. Results on Adult and CelebA. The target label in CelebA is “Attractive” attribute. The details are the same as Fig. 3.

However, because our group classifier does not guarantee to capture proper uncertainty measures, we presume that apply-
ing an uncertainty-aware training can improve CGL as Rizve et al. [27]. We show the number of samples by the confidences
in Fig. D.1. Our classifier shows high confident predictions (over 65% predictions are confident than 0.9 because) because it
is not trained by calibration-aware regularizations [15] or other regularization techniques known to help confidence calibra-
tion scores [8], such as mixed sample augmentations [33, 35] and smoothed labels [31]. Nonetheless, we observe that many
images are still low confident and our group classifier can figure whether the prediction is correct or wrong; when we apply
the optimal threshold, our classifier has 85.43% accuracy to figure out whether the prediction is wrong or correct.

Quality of our group classifier and the threshold-based decision rule. In Tab. D.1, we show the group accuracies of
our group classifier by different decision rules on varying group label ratio. We show two different decision rules: the base-
line argmax strategy and our confidence-based random altering (i.e., argmax if the confidence is larger than τ , otherwise
P (A|Y )) with the best threshold. We observe that our random label strategy slightly hurts the accuracies but not significantly.
In other words, our group classifier has well-sorted confidences that can capture the self predictive uncertainty.

Finally, we compare our group classifier and the “oracle” group classifier which has the same accuracy to ours, but group
labels that our group classifier wrongly predict are replaced into a group label sampled from an uniform distribution. In
other words, “oracle” assumes the scenario where our confidence-based thresholding perfectly operates. Fig. D.2 shows the
comparison of CGL, “pseudo-label” and “oracle” on UTKFace dataset and MFD. Here, we see that “oracle” significantly
improve the performance in terms of fairness other than “pseudo-label”. This imply that only random-labeling for wrongly
predicted group labels can prevent performance degradation of DEO, which experimentally supports our proposition 2. We
also observe that the performance of CGL is comparable one of “oracle”, meaning that random labeling low confident samples
are more critical to the performance than high confident samples with noisy group labels.
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Figure E.2. LBC results on UTKFace

E. Additional experimental results
E.1. Results on Adult dataset

To show the consistent improvements on another dataset, we conducted an additional experiment on Adult dataset with
the same details as the main experiment in the manuscript. UCI Adult dataset [9] is a non-vision tabular dataset used for a
binary classification task where the target label is whether the income exceeds $50K per a year given attributes about the
person. We set gender as the sensitive attribute and used the same processing as Bellamy et al. [3], so that it includes 45,000
data samples.

The left column of Fig. E.1 shows the results of CGL and baselines combined with base fairness methods on Adult dataset,
and we observe the consistent trend of CGL that our method mostly performs better than other baselines for fairness. We
repeatedly note that our slightly lower accuracies do not imply the ineffectiveness of CGL because we report the model with
the best DEO where accuracy is lower-bounded.

E.2. Results on CelebA using the “Attractive” attribute as the target label

The right column of Fig. E.1 shows the target accuracy and ∆M on CelebA using “Attractive” attribute as the target
label. From the right column of Fig. E.1, we again demonstrate the better performance of CGL than other baselines for all
base fairness methods. Since the “Attractive” attribute would be the subjective and potentially unethical to discuss the results
rigorously, as described in the beginning of Appendix, we advise that these results should used only as a auxiliary and not as
a primary result.

E.3. Comparison CGL with UPS

The aim for SSL is to simply predict the future attribute labels as accurately as possible from the partial annotations in the
training set, it is not clear whether the predicted attribute labels can be directly plugged-in to achieve the group fairness in the
test set. To corroborate our finding, we carried out additional experiments with a state-of-the-art SSL method, UPS, utilized
for Fair-PG. UPS iteratively trains the group classifier and predicts the missing group labels in the training set and filters
out the samples with uncertain predictions. (We omitted the negative learning of UPS since it cannot be applied any base
fairness methods.) Note such filtering would unnecessarily discard significant amount of the target label information, hence,
the accuracy would hurt particularly when the group label ratio is low. In Fig. E.2, we report the result of LBC on UTKFace,
including the UPS baseline. We indeed observe that UPS suffers from low accuracy especially when the group-label ratio is
low, and CGL mostly outperforms UPS for both accuracy and fairness. This confirms that a naive plug-in of SSL method for
Fair-PG would not be satisfactory.

E.4. AD results on COMPAS dataset

Tab. E.1, Tab. E.2 and Tab. E.3 compare the target accuraies, ∆A and ∆M of the combinations of AD with three baselines
and CGL on COMPAS dataset. The number in the parentheses with ± stands for the standard deviation of each metric
obtained several independent runs with different seeds. our CGL again show the better performances than other baselines
in terms of fairness for most cases. Through the case where the group-label ratio is 25%, we can see that confidence-based
thresholding by a group classifier can be slightly sensitive in the group label regime if the base fairness method is vulnerable
to noisy group labels (e.g., AD).



Table E.1. Accuracy on COPMAS for AD.

100% 80% 50% 25% 10%

group-labeled only

63.51 (±1.45)

65.32 (±0.58) 63.65 (±0.37) 61.30 (±1.22) 57.52 (±2.84)
random label 63.61 (±0.55) 63.11 (±0.67) 64.44 (±1.38) 64.67 (±0.24)
psuedo-label 64.55 (±0.41) 64.12 (±0.63) 63.19 (±0.18) 65.80 (±0.38)

CGL 63.05 (±1.13) 63.25 (±0.60) 64.24 (±1.24) 63.82 (±1.55)

Table E.2. ∆A on COPMAS for AD.

100% 80% 50% 25% 10%

group-labeled only

10.35 (±1.84)

13.32 (±2.14) 11.46 (±0.63) 9.75 (±1.84) 5.27 (±0.76)
random label 9.26 (±1.46) 10.69 (±1.46) 13.17 (±2.10) 11.90 (±1.44)
psuedo-label 12.43 (±3.39) 12.11 (±4.07) 11.37 (±3.17) 16.26 (±0.57)

CGL 9.63 (±3.60) 11.93 (±3.90) 14.71 (±1.27) 10.67 (±2.70)

Table E.3. ∆M on COPMAS for AD.

100% 80% 50% 25% 10%

group-labeled only

12.72 (±2.98)

16.30 (±2.41) 14.39 (±1.50) 12.61 (±2.11) 8.52 (±2.22)
random label 12.37 (±2.09) 13.51 (±1.38) 15.96 (±1.93) 15.70 (±2.26)
psuedo-label 16.15 (±3.79) 15.68 (±4.73) 13.97 (±2.67) 19.57 (±0.93)

CGL 13.78 (±5.00) 14.73 (±5.28) 17.96 (±0.31) 13.23 (±3.82)

Table E.4. Accuracy on UTKFace for MFD.

100% 80% 50% 25% 10%

group-labeled only

81.15 (±0.28)

81.42 (±0.39) 80.60 (±0.37) 78.67 (±0.64) 73.88 (±0.78)
random label 81.92 (±0.36) 82.33 (±0.53) 81.90 (±0.63) 82.04 (±0.34)
psuedo-label 81.27 (±0.60) 80.83 (±0.39) 80.50 (±0.54) 79.17 (±0.54)

CGL 81.10 (±0.24) 81.42 (±0.42) 81.90 (±0.41) 82.15 (±0.58)

Table E.5. ∆A on UTKFace for MFD.

100% 80% 50% 25% 10%

group-labeled only

15.67 (±0.71)

16.33 (±0.85) 17.08 (±1.46) 18.50 (±1.38) 21.25 (±2.66)
random label 16.83 (±0.29) 18.58 (±0.83) 22.58 (±0.86) 23.50 (±1.80)
psuedo-label 16.33 (±0.97) 16.67 (±0.41) 18.58 (±1.95) 20.00 (±2.16)

CGL 15.33 (±1.03) 14.92 (±2.17) 17.17 (±1.57) 17.25 (±1.04)

E.5. Result tables

Table from E.4 to E.30 show the detailed results including accuracy, ∆A and ∆M for all experiments in Figure 3, 4 and 5
in the main manuscript. The details of numbers in parentheses are the same as tables in Appendix E.4.



Table E.6. ∆M on UTKFace for MFD.

100% 80% 50% 25% 10%

group-labeled only

24.00 (±1.58)

26.25 (±3.56) 26.75 (±2.59) 32.50 (±2.87) 36.00 (±2.92)
random label 25.50 (±1.66) 29.25 (±4.66) 36.50 (±0.50) 37.25 (±3.19)
psuedo-label 25.75 (±2.86) 27.50 (±0.87) 32.75 (±3.83) 35.75 (±4.49)

CGL 24.50 (±2.06) 24.25 (±2.17) 26.25 (±3.49) 27.25 (±2.77)

Table E.7. Accuracy on UTKFace for FairHSIC.

100% 80% 50% 25% 10%

group-labeled only

81.85 (±0.23)

80.29 (±0.64) 80.02 (±1.10) 73.04 (±3.68) 70.38 (±1.27)
random label 81.67 (±0.48) 81.44 (±0.78) 81.40 (±0.78) 81.65 (±0.56)
psuedo-label 81.00 (±1.02) 81.77 (±0.26) 81.35 (±0.56) 80.65 (±0.59)

CGL 81.62 (±0.79) 81.46 (±0.72) 81.77 (±0.57) 81.90 (±0.89)

Table E.8. ∆A on UTKFace for FairHSIC.

100% 80% 50% 25% 10%

group-labeled only

18.50 (±1.67)

21.33 (±1.62) 21.67 (±1.67) 22.08 (±2.18) 27.42 (±4.30)
random label 22.50 (±1.71) 22.50 (±1.30) 23.75 (±2.17) 23.50 (±1.34)
psuedo-label 21.92 (±1.01) 21.08 (±2.25) 19.75 (±1.77) 20.67 (±0.94)

CGL 20.67 (±1.70) 20.75 (±1.09) 20.42 (±1.11) 18.50 (±1.46)

Table E.9. ∆M on UTKFace for FairHSIC.

100% 80% 50% 25% 10%

group-labeled only

30.50 (±4.33)

38.50 (±2.96) 37.50 (±3.84) 36.50 (±2.18) 42.00 (±3.67)
random label 36.50 (±3.04) 35.75 (±3.27) 38.00 (±3.67) 36.50 (±2.60)
psuedo-label 34.25 (±3.27) 33.50 (±1.50) 32.25 (±4.97) 33.50 (±1.66)

CGL 34.00 (±3.08) 32.75 (±2.28) 33.25 (±2.86) 32.50 (±2.69)

Table E.10. Accuracy on UTKFace for LBC.

100% 80% 50% 25% 10%

group-labeled only

79.42 (±0.74)

79.46 (±1.16) 77.83 (±0.28) 76.21 (±0.63) 71.21 (±1.06)
random label 80.33 (±0.69) 80.42 (±0.64) 80.90 (±0.62) 81.29 (±0.82)
psuedo-label 80.00 (±0.50) 79.29 (±0.96) 79.65 (±0.97) 79.65 (±0.96)

CGL 80.04 (±0.82) 80.19 (±0.35) 79.75 (±0.74) 79.75 (±0.67)

Table E.11. ∆A on UTKFace for LBC.

100% 80% 50% 25% 10%

group-labeled only

18.75 (±1.04)

19.58 (±2.95) 21.58 (±1.66) 22.58 (±1.04) 24.67 (±2.25)
random label 19.42 (±0.76) 21.00 (±0.97) 23.08 (±0.86) 22.17 (±1.07)
psuedo-label 19.08 (±1.16) 19.17 (±1.17) 19.75 (±1.93) 19.92 (±1.99)

CGL 18.00 (±2.90) 17.92 (±1.66) 17.83 (±1.83) 19.25 (±1.64)



Table E.12. ∆M on UTKFace for LBC.

100% 80% 50% 25% 10%

group-labeled only

33.50 (±2.69)

34.50 (±3.84) 38.50 (±1.12) 41.25 (±3.96) 42.50 (±7.09)
random label 36.25 (±1.09) 39.25 (±2.77) 40.25 (±1.92) 40.75 (±2.95)
psuedo-label 33.75 (±2.17) 33.00 (±2.00) 35.50 (±3.35) 36.50 (±2.87)

CGL 31.50 (±5.12) 32.25 (±1.64) 35.00 (±3.32) 34.00 (±1.87)

Table E.13. Accuracy on CelebA for MFD.

100% 25% 10% 5% 1%

group-labeled only

90.14 (±0.12)

89.03 (±0.28) 88.96 (±0.49) 87.50 (±0.42) 82.50 (±2.08)
random label 88.96 (±0.07) 87.71 (±0.21) 87.78 (±0.69) 86.74 (±0.07)
psuedo-label 90.49 (±0.49) 90.69 (±0.28) 90.62 (±0.07) 90.62 (±0.07)

CGL 89.86 (±0.14) 90.90 (±0.07) 90.49 (±0.07) 90.14 (±0.28)

Table E.14. ∆A on CelebA for MFD.

100% 25% 10% 5% 1%

group-labeled only

5.28 (±0.69)

4.72 (±0.56) 4.03 (±0.69) 3.61 (±0.00) 8.61 (±0.00)
random label 11.53 (±0.14) 15.97 (±0.69) 16.39 (±0.56) 18.47 (±0.97)
psuedo-label 5.42 (±0.69) 5.28 (±0.56) 5.14 (±0.42) 6.25 (±0.14)

CGL 5.28 (±0.83) 4.03 (±0.14) 4.58 (±0.42) 6.39 (±0.56)

Table E.15. ∆M on CelebA for MFD.

100% 25% 10% 5% 1%

group-labeled only

8.33 (±1.04)

7.78 (±1.67) 5.83 (±0.83) 6.67 (±0.00) 15.56 (±0.56)
random label 20.00 (±0.00) 26.67 (±2.22) 27.22 (±1.11) 31.67 (±1.11)
psuedo-label 9.44 (±0.00) 10.28 (±1.39) 9.17 (±1.39) 11.39 (±0.28)

CGL 8.06 (±0.83) 7.22 (±0.56) 7.78 (±0.00) 10.83 (±1.39)

Table E.16. Accuracy on CelebA for FairHSIC.

100% 25% 10% 5% 1%

group-labeled only

87.22 (±0.42)

83.82 (±0.07) 81.11 (±1.39) 80.83 (±1.94) 74.72 (±1.25)
random label 84.86 (±0.14) 85.90 (±0.21) 84.93 (±0.35) 85.56 (±0.14)
psuedo-label 87.99 (±0.76) 89.31 (±0.69) 88.19 (±0.42) 88.82 (±0.49)

CGL 87.50 (±1.11) 87.78 (±1.39) 87.50 (±1.11) 88.68 (±0.07)

Table E.17. ∆A on CelebA for FairHSIC.

100% 25% 10% 5% 1%

group-labeled only

12.50 (±1.11)

10.42 (±3.75) 15.83 (±2.50) 12.50 (±3.61) 14.72 (±2.78)
random label 20.00 (±1.11) 18.19 (±0.42) 19.31 (±0.14) 20.00 (±0.83)
psuedo-label 10.14 (±3.19) 9.17 (±0.28) 12.50 (±0.28) 7.92 (±0.97)

CGL 11.67 (±1.11) 10.28 (±4.17) 12.22 (±1.11) 9.31 (±2.36)



Table E.18. ∆M on CelebA for FairHSIC.

100% 25% 10% 5% 1%

group-labeled only

20.56 (±1.67)

18.61 (±6.39) 26.94 (±3.61) 22.22 (±6.11) 24.72 (±1.94)
random label 32.78 (±2.78) 30.00 (±1.67) 32.78 (±0.00) 34.17 (±1.39)
psuedo-label 17.50 (±4.72) 13.61 (±0.83) 20.28 (±1.39) 13.33 (±1.67)

CGL 20.28 (±4.17) 17.22 (±7.78) 20.00 (±3.33) 13.61 (±4.17)

Table E.19. Accuracy on CelebA for LBC.

100% 25% 10% 5% 1%

group-labeled only

77.57 (±1.46)

73.54 (±0.63) 74.86 (±1.25) 76.60 (±1.18) 72.29 (±3.12)
random label 78.19 (±0.14) 78.75 (±0.28) 79.03 (±0.56) 78.89 (±0.14)
psuedo-label 78.06 (±1.11) 77.57 (±0.49) 76.39 (±0.42) 76.25 (±0.14)

CGL 75.49 (±0.21) 76.39 (±0.69) 76.32 (±0.07) 76.81 (±1.39)

Table E.20. ∆A on CelebA for LBC.

100% 25% 10% 5% 1%

group-labeled only

12.36 (±0.14)

13.75 (±2.08) 15.28 (±3.06) 13.47 (±0.14) 18.19 (±2.92)
random label 21.94 (±0.28) 24.17 (±1.11) 23.61 (±1.11) 25.28 (±0.00)
psuedo-label 12.50 (±1.39) 13.19 (±2.92) 11.11 (±0.28) 10.00 (±0.56)

CGL 12.08 (±0.14) 9.17 (±0.56) 8.47 (±0.42) 8.33 (±0.83)

Table E.21. ∆M on CelebA for LBC.

100% 25% 10% 5% 1%

group-labeled only

23.61 (±0.83)

26.67 (±3.89) 30.00 (±5.56) 25.83 (±0.83) 35.00 (±5.56)
random label 43.61 (±0.83) 47.22 (±2.78) 45.83 (±3.06) 49.44 (±0.56)
psuedo-label 24.44 (±2.78) 26.11 (±6.11) 21.67 (±1.11) 19.17 (±0.83)

CGL 23.89 (±0.56) 17.50 (±0.83) 16.39 (±1.39) 16.39 (±1.39)

Table E.22. Accuracy on COPMAS for MFD.

100% 80% 50% 25% 10%

group-labeled only

62.30 (±0.37)

63.61 (±0.45) 64.67 (±0.49) 62.28 (±1.33) 59.95 (±1.55)
random label 63.15 (±0.74) 63.86 (±0.90) 64.14 (±0.70) 64.87 (±0.66)
psuedo-label 63.23 (±0.48) 64.24 (±0.78) 63.61 (±1.27) 64.32 (±0.51)

CGL 63.07 (±0.68) 64.08 (±0.59) 63.17 (±0.68) 63.61 (±1.22)

Table E.23. ∆A on COPMAS for MFD.

100% 80% 50% 25% 10%

group-labeled only

6.52 (±0.97)

8.57 (±0.34) 13.59 (±2.08) 11.72 (±0.90) 5.13 (±1.13)
random label 7.57 (±1.48) 11.72 (±0.66) 12.84 (±1.67) 14.15 (±1.21)
psuedo-label 6.88 (±0.92) 8.95 (±1.02) 11.09 (±1.80) 12.87 (±1.68)

CGL 6.27 (±1.08) 7.99 (±0.65) 10.70 (±1.90) 10.82 (±2.18)



Table E.24. ∆M on COPMAS for MFD.

100% 80% 50% 25% 10%

group-labeled only

7.18 (±0.89)

10.24 (±1.14) 17.13 (±2.64) 14.96 (±2.40) 7.15 (±0.69)
random label 9.67 (±3.05) 14.86 (±0.56) 17.13 (±2.68) 18.39 (±2.58)
psuedo-label 8.35 (±1.97) 11.57 (±0.88) 15.46 (±2.12) 15.55 (±2.73)

CGL 7.28 (±1.66) 10.36 (±0.54) 14.82 (±2.60) 13.57 (±4.15)

Table E.25. Accuracy on COPMAS for FairHSIC.

100% 80% 50% 25% 10%

group-labeled only

63.94 (±0.36)

64.40 (±0.70) 64.65 (±0.31) 62.26 (±1.12) 58.95 (±1.46)
random label 64.99 (±0.24) 64.69 (±1.18) 64.22 (±0.66) 63.05 (±0.94)
psuedo-label 64.83 (±0.28) 63.17 (±0.26) 63.53 (±0.64) 63.82 (±0.65)

CGL 63.31 (±0.64) 63.55 (±0.51) 63.21 (±0.33) 63.61 (±0.82)

Table E.26. ∆A on COPMAS for FairHSIC.

100% 80% 50% 25% 10%

group-labeled only

7.63 (±1.20)

9.80 (±1.21) 11.65 (±2.14) 11.32 (±1.16) 6.59 (±1.90)
random label 11.66 (±1.25) 11.05 (±1.88) 11.91 (±1.90) 11.74 (±1.49)
psuedo-label 9.92 (±1.24) 7.76 (±1.26) 9.91 (±1.85) 11.57 (±1.21)

CGL 6.01 (±1.71) 8.12 (±1.32) 9.37 (±2.11) 10.63 (±1.85)

Table E.27. ∆M on COPMAS for FairHSIC.

100% 80% 50% 25% 10%

group-labeled only

9.66 (±1.46)

11.65 (±2.01) 14.66 (±2.37) 14.51 (±1.73) 9.36 (±2.67)
random label 14.42 (±2.78) 14.30 (±1.39) 16.04 (±1.78) 15.01 (±3.32)
psuedo-label 11.91 (±2.04) 10.56 (±1.01) 13.07 (±1.38) 16.51 (±2.68)

CGL 8.13 (±3.01) 10.27 (±1.89) 12.98 (±2.84) 14.43 (±3.13)

Table E.28. Accuracy on COPMAS for LBC.

100% 80% 50% 25% 10%

group-labeled only

61.73 (±0.12)

63.05 (±0.21) 63.90 (±0.95) 61.99 (±1.47) 58.77 (±1.31)
random label 64.81 (±0.25) 66.51 (±0.44) 66.77 (±0.30) 66.79 (±0.14)
psuedo-label 63.09 (±0.90) 65.36 (±0.27) 66.07 (±0.39) 66.11 (±0.93)

CGL 63.01 (±0.83) 64.20 (±1.41) 65.70 (±0.28) 65.80 (±1.08)

Table E.29. ∆A on COPMAS for LBC.

100% 80% 50% 25% 10%

group-labeled only

4.36 (±0.69)

6.05 (±1.37) 8.94 (±1.72) 11.31 (±0.42) 7.61 (±0.60)
random label 9.01 (±0.99) 14.39 (±1.28) 17.70 (±0.74) 18.93 (±0.56)
psuedo-label 5.59 (±1.28) 11.20 (±0.91) 14.70 (±1.53) 16.80 (±1.04)

CGL 4.99 (±1.48) 10.32 (±1.91) 14.24 (±0.74) 15.56 (±1.63)



Table E.30. ∆M on COPMAS for LBC.

100% 80% 50% 25% 10%

group-labeled only

7.30 (±1.04)

8.18 (±1.57) 11.63 (±1.92) 14.33 (±1.44) 11.02 (±2.31)
random label 11.94 (±1.32) 17.99 (±1.79) 21.71 (±0.98) 22.91 (±1.21)
psuedo-label 8.79 (±1.59) 14.49 (±1.44) 18.40 (±1.68) 20.02 (±2.46)

CGL 7.83 (±2.35) 13.21 (±2.91) 18.24 (±0.42) 18.85 (±2.50)
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