
A. Bi-level optimization
A.1. Metrics for lower-level subproblem

IPMs. We start from the gradient of standard objective
for EBLVM i.e. Eq. (3):

ω∗(ψ) = arg min
ω∈Ω∥∥∥Ep(v)pψ(h|v) [∇ψEψ]− Ep(v)qω1 (z|a) [∇ψEψ]

∥∥∥
∞

(16)

+
∥∥∥Epω2 (v,h) [∇ψEψ]− Epψ(v,h) [∇ψEψ]

∥∥∥
∞
. (17)

Then we bound two infinite norms from above by general
integral probability metrics (IPMs), we only show deriva-
tion about term (17) and the derivation about term (16) can
be obtained by the same way:∥∥∥Epω2 (v,h) [∇ψEψ]− Epψ(v,h) [∇ψEψ]

∥∥∥
∞

≤ sup
f :V×H→R,f∈F

∣∣∣Epω2 (v,h) [f(v, h)]− Epψ(v,h) [f(v, h)]
∣∣∣

= DF (pω2
(v, h), pψ(v, h)),

(18)

where F is a class of scalar function over space V ×H, DF
denotes the IPM induced by F . Notice F depends on the
gradient of energy function ∇ψEψ(v, h), we thus propose
some assumptions about∇ψEψ(v, h) for special cases:

(1) Assume the infinite norm of each component, i.e.
‖∇ψEψ(v, h)i‖∞, is bounded by a constant C, then

(17) ≤ C ·DTV(pω2
(v, h), pψ(v, h)),

where DTV denotes the total variation distance correspond-
ing to F = {f : ‖f‖∞ ≤ 1}.

(2) Assume each component ∇ψEψ(v, h)i is C-
Lipschitz, then

(17) ≤ C ·W1(pω2
(v, h), pψ(v, h)),

where W1 denotes the 1-Wasserstein distance correspond-
ing to F = {f : f is 1-Lipschitz}.

(3) Assume the norm of each component defined in re-
producing kernel Hilbert space H, i.e. ‖∇ψEψ(v, h)i‖H, is
bounded by a constant C, then

(17) ≤ C ·MMD(pω2(v, h), pψ(v, h)),

where MMD denotes the maximum mean discrepancy cor-
responding to F = {f : ‖f‖H ≤ 1}.

Practical choices. Assumption (2) is hard to verify be-
cause both pψ(h|v) and pψ(v, h) are intractable in our set-
ting, so that we can not directly use the metric for optimiza-
tion. In practice, we resort to moderate metrics under mild
assumptions:

1. Notice that assumption (1) is typically mild in practice
and we can consider the generally adopted KL divergence
by Pinsker’s inequality

2DTV(pw2 , pψ)2 ≤ DKL(pw2‖pψ),

where the equality holds only if pw2
equals pψ . KL diver-

gence has a stronger convergence than many other diver-
gence metrics and we show that it is feasible in our work.

2. Under assumption (3), MMD2(p, q) = E[k(x, x′) −
2k(x, y) + k(y, y′)], where x, x′ and y, y′ are i.i.d. drew
from p and q, respectively. However, it is impossible to
obtain its gradient w.r.t. w by Monte Carlo estimation. The
kernelized Stein discrepancy (KSD) is a special MMD with
a kernel uq(x, x′) depending on q:

KSD(p, q) = Ex,x′∼p[uq(x, x′)]
uq(x, x

′) = sq(x)>k(x, x′)sq(x
′) + sq(x)>∇x′k(x, x′)

+∇xk(x, x′)>sq(x
′) + trace(∇x,x′k(x, x′)),

where sq(x) = ∇x log q(x) is known as the score function.
Score function is a gradient w.r.t. x, so it eliminates the in-
tractable partition function which is independent of variable
x. We also refer to Fisher divergence as a moderate metric
in our setting which is further stronger than KL, total varia-
tion and KSD. Using Fisher divergence in fact corresponds
to score matching widely used in learning generative mod-
els.

A.2. Derivations

In this subsection, we provide some supplemental
derivations. We start from the Eq. (5) with focus on the
second part in Eq. (5) and the first part can be derived in a
same way:

∂DKL(pω2(ψ)(v, h)‖pψ(v, h))

∂ψ

=
∂DKL(pω2

(v, h)‖pψ(v, h))

∂ψ
|ω2=ω2(ψ)

+

(
∂ω2(ψ)

∂ψ>

)>
∂DKL(pω2

(v, h)‖pψ(v, h))

∂ω2
|ω2=ω2(ψ),

where ∂ω2(ψ)
∂ψ is the Jacobian. We then look into its first

term as follow where we use∇ψ for clarity:

∇ψDKL(pω2
(v, h)‖pψ(v, h))|ω2=ω2(ψ)

=∇ψ
[∫

pω2(v, h) log
pω2(v, h)

pψ(v, h)
dhdv

]
ω2=ω2(ψ)

=∇ψ
[
−
∫
pω2

(v, h) log
exp (−Eψ)

Z(ψ)
dhdv

]
ω2=ω2(ψ)

= Epω2(ψ)(v,h) [∇ψEψ] +∇ψ logZ(ψ),



where the partition function Z(ψ) is independent of vari-
ables v and h. At last, we obtain Eq. (5) by

∂DKL(q(v)qω1(h|v)‖pψ(v, h))

∂ψ
|ω1=ω1(ψ)

−∂DKL(pω2
(v, h)‖pψ(v, h))

∂ψ
|ω2=ω2(ψ)

= Eq(v)qω1(ψ)(h|v) [∇ψEψ] +∇ψ logZ(ψ)

−Epω2(ψ)(v,h) [∇ψEψ]−∇ψ logZ(ψ)

= Eq(v)qω1(ψ)(h|v) [∇ψEψ]− Epω2(ψ)(v,h) [∇ψEψ] .

Furthermore, recall Eq. (7), we have:

∂JUL(ψ, ω)

∂ψ
|ω=ω∗(ψ) =

Eq(v)qω∗1 (ψ)(h|v) [∇ψEψ]− Epω∗2 (ψ)(v,h) [∇ψEψ]
(19)

(
∂ω∗(ψ)

∂ψ>

)>
∂JUL(ψ, ω)

∂ω
|ω=ω∗(ψ) =(

∂ω∗1(ψ)

∂ψ>

)>
∂DKL(q(v)qω1

(h|v)‖pψ(v, h))

∂ω1
|ω1=ω∗1 (ψ)

−
(
∂ω∗2(ψ)

∂ψ>

)>
∂DKL(pω2(v, h)‖pψ(v, h))

∂ω2
|ω2=ω∗2 (ψ),

(20)

A.3. Proof and properties

We next proof the equivalence of BLO problem (4,6) and
the original one, under the unparametric assumption.

Proof of Theorem 1. Suppose for ψ ∈ Ψ we have ω̂ ∈
Ω such that D(q(v)qω̂1

(h|v), q(v)pψ(h|v)) = 0 and
D(pω̂2(v, h), pψ(v, h)) = 0, then 0 ≤ JLL(ψ, ω∗(ψ)) ≤
JLL(ψ, ω̂) = 0, thus JLL(ψ, ω∗(ψ)) = 0. In other words,
ω∗(ψ) satisfies qω∗1 (ψ)(h|v) = pψ(h|v), pω∗2 (ψ)(v, h) =

pψ(v, h). Then we have

|JUL(ψ, ω∗(ψ))− J (ψ)|
= |DKL(q(v)qω∗1 (ψ)(h|v)‖pψ(v, h))

− DKL(pω∗2 (ψ)(v, h)‖pψ(v, h))−DKL(q(v)‖pψ(v))|

=

∣∣∣∣Eq(v)qω∗1 (ψ)(h|v)

[
log

q(v)qω∗1 (ψ)(h|v)

pψ(v)pψ(h|v)

]
− DKL(pω∗2 (ψ)(v, h)‖pψ(v, h))− Eq(v)

[
log

q(v)

pψ(v)

] ∣∣∣∣
=

∣∣∣∣Eq(v)qω∗1 (ψ)(h|v)

[
log

qω∗1 (ψ)(h|v)

pψ(h|v)

]
− DKL(pω∗2 (ψ)(v, h)‖pψ(v, h))

∣∣∣∣
= |DKL(q(v)qω∗1 (ψ)(h|v)‖q(v)pψ(h|v))

− DKL(pω∗2 (ψ)(v, h)‖pψ(v, h))|
≤ DKL(q(v)qω∗1 (ψ)(h|v)‖q(v)pψ(h|v))

+ DKL(pω∗2 (ψ)(v, h)‖pψ(v, h)) = 0,
(21)

where the last equation holds because DKL(P‖Q) = 0 is
equivalent to P = Q. On the other hand, by (3,6,19,20), we
have

‖∇ψJ (ψ)−∇ψJUL(ψ, ω∗(ψ))‖∞

=

∥∥∥∥Eq(v)pψ(h|v) [∇ψEψ]− Eq(v)qω∗1 (ψ)(h|v) [∇ψEψ]

+ Epω∗2 (ψ)(v,h) [∇ψEψ]− Epψ(v,h) [∇ψEψ]

−
(
∂ω∗(ψ)

∂ψ>

)>
∂JUL(ψ, ω)

∂ω
|ω=ω∗(ψ)

∥∥∥∥
∞

≤ ‖Eq(v)pψ(h|v) [∇ψEψ]− Eq(v)qω∗1 (ψ)(h|v) [∇ψEψ] ‖∞
+ ‖Epω∗2 (ψ)(v,h) [∇ψEψ]− Epψ(v,h) [∇ψEψ] ‖∞

+

∥∥∥∥(∂ω∗(ψ)

∂ψ>

)>
∂JUL(ψ, ω)

∂ω
|ω=ω∗(ψ)

∥∥∥∥
∞
.

(22)
Because ω∗(ψ) satisfies qω∗1 (ψ)(h|v) = pψ(h|v) and
pω∗2 (ψ)(v, h) = pψ(v, h), under nonparametric assumption.
Thus we know that ω1 = ω∗1(ψ), ω2 = ω∗2(ψ) are the sta-
tionary points of minω1 DKL(q(v)qω1(h|v)‖q(v)pψ(h|v))
and minω2 DKL(pω2(v, h)‖pψ(v, h)), respectively. Due to

∇ω1
DKL(q(v)qω1

(h|v)‖q(v)pψ(h|v))

=∇ω1
DKL(q(v)qω1

(h|v)‖pψ(v, h)),

we have ∂JUL(ψ,ω)
∂ω |ω=ω∗(ψ) = 0. Consequently we bound

Eq. (22) by

≤ C ·D(q(v)qω∗1 (ψ)(h|v), q(v)pψ(h|v))

+ C ·D(pω∗2 (ψ)(v, h), pψ(v, h))

= C · JLL(ψ, ω∗(ψ)) = 0,



Figure 5. Randomly generated images on CIFAR-10.

which is derived from Eq. (18), C depends on the assump-
tion about the gradient of energy function. At last we have
∇ψJ (ψ) = ∇ψJUL(ψ, ω∗(ψ)).

In fact, the unparametric assumption typically does not
hold when we take neural networks as the variational ap-
proximators, thus the optima of ω may not lie in the
parameter space Ω. The proof (21) characterizes that
the bias of upper-level objective JUL(ψ, ω∗(ψ)) can be
bounded by KL divergences. It means that if we choose
KL divergence or certain stronger metric, e.g. Fisher di-
vergence, in lower-level subproblem, we can obtain bounds
on both sides as |JUL(ψ, ω∗(ψ)) − DKL(q(v)‖pψ(v))| ≤
C ′ · minω∈Ω JLL(ψ, ω), where C ′ depends on the met-
ric we choose and the assumptions about the gradient of
energy function ∇ψEψ(v, h). To ensure the constraint on
∇ψEψ(v, h), we introduce spectral normalization into the
energy network in our experiments. On the other hand,
Eq. (22) indicates the upper and lower bound (black curves)
in Fig. 1, and the lower-level optimization forces the gradi-
ent estimate (the gradient of upper level) to fit the real one.

B. Additional experiments

In the main paper, we demonstrate experiments on 32×
32 and 64× 64 images, both are small scale, because of the
weak expressiveness of convolutional layers based struc-
ture. To improve the expressiveness, we borrow the Resnet-
based structure of SNGAN [33] to build our marginal EBM,
inference model and IGM. And then, we use proposed com-
pact BiDVL to train models on CIFAR-10 and CelebA-128.

In this part, CIFAR-10 dataset consisting of 32×32 scale
images, is to compare the generative performance of the

Figure 6. Reconstruction images on CelebA-128.

Figure 7. Randomly generated images on CelebA-128.

Resnet-based model with the simple-structured model in the
main paper. While the CelebA-128 dataset constructed by
resizing images in CelebA to 128×128, is for evaluating the
adaptability to higher-dimensional data. They go through
the same pre-processing as in main experiments.

We borrow the structure of the discriminator and the
generator of SNGAN to build the marginal EBM and the
IGM for both 32 × 32 and 128 × 128 datasets. But for
the inference model, which is not included in SNGAN,
we cascade spectral normalized Resblocks in the same
way as in SNGAN discriminator, except that, the last lin-
ear layer is replaced with two linear layer to output the
mean and the log-variance, respectively. Moreover, the log-
variance is followed by a Softplus function to be bound
within (−∞, 0), corresponding to bound the output vari-
ance within (0, 1), which significantly helps the training in
early stage.

For both CIFAR-10 and CelebA-128, we apply the off-
set compact BiDVL (13,14) and alternatively optimize the



upper-level objective with one step and the lower-level ob-
jective with one step, i.e. set the number of lower-level steps
N to one.

Unfortunately, we found the complex structure exacer-
bates another learning problems resulting in instability of
the marginal EBM. Since the output of the EBM is an un-
bounded real value, training with the Monte Carlo estimate
of the upper-level gradient (13) makes the energy easily to
reduces to −∞. It may because adding a constant to the
whole energy landscape will not change the probability dis-
tribution:

p(v) =
exp(−E(v))∫
exp(−E(v))dv

=
exp(−E(v) + c)∫
exp(−E(v) + c)dv

,

however, largely influences the training stability. To han-
dle the numerical problem efficiently, we turn to adopt a
restricted version of Eq. (13):

∇ψ′J̃UL(ψ′) = Eq(v)[∇ψ′ReLU(1 + Eψ′(v))]

+ Epω2
(v,h)[∇ψ′ReLU(1− Eψ′(v))],

(23)

which can prevent EBM from outputting numerical unstable
value. Furthermore, Eq. (23) may be regarded as a strong
constraint on ∇ψ′Eψ′(v) as discussed in Appendix A.1,
since it clips the objective directly.

The Resnet-based model gets 16.37 FID on CIFAR-10
and demonstrates better performance than the best model
shown in Tab. 1. The generated images are presented in
Fig. 5. For CelebA-128, we experimentally find that mod-
els simply cascading convolutional layers fails to generate
meaningful images, but the Resnet-based model can gener-
ate good images as demonstrated in Fig. 7. Some recon-
struction images are shown in Fig. 6.
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