
Supplementary Material for
AR-NeRF: Unsupervised Learning of Depth and Defocus Effects

from Natural Images with Aperture Rendering Neural Radiance Fields

Takuhiro Kaneko

NTT Communication Science Laboratories, NTT Corporation

Appendix
This appendix provides detailed analyses (Appendix A),

additional qualitative results (Appendix B), and implemen-
tation details (Appendix C).

A. Detailed analyses
In this section, we present seven detailed analyses to pro-

vide a deeper understanding of the proposed model.

• Appendix A.1: Importance of learning defocus effects.

• Appendix A.2: Effect of aperture ray sampling
scheme.

• Appendix A.3: Simultaneous control of viewpoint and
defocus.

• Appendix A.4: Generation of higher-resolution im-
ages.

• Appendix A.5: Application to defocus renderer.

• Appendix A.6: Fréchet inception distance.

• Appendix A.7: Gradient of difference in depth.

A.1. Importance of learning defocus effects

As discussed in Section 4.2, we represent aperture ren-
dering in a ray-tracing framework, which is the basis of
NeRF. Thus, our idea is general; its application is not
restricted to AR-NeRF and can be incorporated into any
NeRF-based model, including existing or pretrained mod-
els. This fact raises the question of whether it is necessary
to learn the defocus effect from the data because we can at-
tach the defocus effects virtually by incorporating aperture
rendering into the model, even if aperture rendering is not
used in the training.

In the main text, we present evidence verifying the im-
portance of learning defocus effects from some perspec-
tives. More specifically, the results in Table 2 indicate that
the learning of the defocus effects is useful for improv-
ing model performance in terms of both image quality and
depth accuracy. In this section, we examine the tolerance to
defocus manipulation.

Oxford Flowers σs 2σs 3σs 4σs 5σs

pi-GAN++ 8.27 10.63 19.40 32.04 43.94
AR-NeRF 7.86 9.07 14.21 22.09 31.91

CUB-200-2011 σs 2σs 3σs 4σs 5σs

pi-GAN++ 9.90 11.15 14.26 19.95 29.66
AR-NeRF 6.81 7.26 9.43 13.26 19.77

FFHQ σs 2σs 3σs 4σs 5σs

pi-GAN++ 4.64 6.94 11.54 17.10 23.81
AR-NeRF 3.66 5.30 9.51 14.98 21.60

Table 3. Changes in the KID↓ (×103) when varying the aper-
ture size to s ∈ {σs, 2σs, 3σs, 4σs, 5σs}. σs is the standard de-
viation of the aperture size obtained by training AR-NeRF.

When a model can manipulate the defocus strength to the
greatest extent possible, we believe that it can generate an
image that is close to a real image even when large defocus
effects are imposed. Based on this consideration, we ex-
amined the KID when large defocus effects were imposed
on pi-GAN++ (i.e., a model without learning the defocus
effects) and AR-NeRF (i.e., a model that learns the defo-
cus effects). More precisely, we calculated the KID when
the aperture size s ∈ {σs, 2σs, 3σs, 4σs, 5σs}, where σs is
the standard deviation of the aperture size obtained through
AR-NeRF training.

Results. We summarize the results in Table 3. We found
that for every dataset and aperture size, AR-NeRF outper-
formed pi-GAN++ in terms of the KID score. In particu-
lar, we found that the difference is significant in the Ox-
ford Flowers and CUB-200-2011 datasets, where viewpoint
cues are limited or difficult to obtain and defocus cues play
a critical role in obtaining a better SIDE (as shown in Ta-
ble 2). These results indicate that (1) neural radiance fields
need to be optimized for defocus effects to obtain defocus-
tolerant representations that can be jointly used in various
ranges of defocus strength, and (2) AR-NeRF (i.e., a model
that learns the defocus effects) is useful for addressing this
problem, particularly when other cues (e.g., viewpoint cues)
are limited.

1

A.2. Effect of aperture ray sampling scheme

As discussed in Section 4.4, stratified sampling [17] was
used to represent the aperture using a limited number of
rays. We used five rays in particular: the origin of one ray
was placed at the center of the aperture, and the origins of
the others were placed along the circumference of the aper-
ture at equal intervals. In this section, we examine the effect
of this approximation.

Increasing the number of rays in the training phase is
costly; thus, we examined the effect of an aperture ray sam-
pling scheme in the inference phase. More specifically, we
compared stratified sampling, which was used in the main
experiments, with random sampling, where the offsets of
ray origins, that is, u in Equation 3, were randomly sam-
pled in a disk of radius s (i.e., |u| ∈ [0, s]). To examine
the effects of the number of rays, we investigated the dif-
ference in performance when changing the number of rays
in {1, 2, 5, 10, 20}. As mentioned above, we examined the
difference in performance in an inference phase. Hence, the
base-trained model was the same as that used in Section 5
and was common across all settings.
Results. We summarize the results in Table 4. We found
that, when we use random sampling, (1) the performance is
improved as the number of rays increases until reaching ap-
proximately 10,1 (2) the model with five rays (in the fourth
column) performs worse than the model with the same num-
ber of rays with stratified sampling (in the last column), and
(3) we need to increase the number of rays to 10 (in the
fifth column) to obtain a performance comparable to that
of the model with stratified sampling (in the last column).
Considering that processing time and memory increase as
the number of rays increases, we believe that stratified sam-
pling with five rays is a reasonable choice in our experimen-
tal settings.

It is a possible that we will need to use more rays when
applying to higher-resolution images, and in that case, we
will need to increase the number of points along the ray.

A.3. Simultaneous control of viewpoint and defocus

AR-NeRF is a natural extension of NeRF, in which pin-
hole camera-based ray tracing is replaced with aperture
camera-based ray tracing. This extension does not con-
tradict the basic functionalities of NeRF. Thus, AR-NeRF
can learn viewpoint-aware representations by taking over
the characteristics of NeRF.

1The reason why the performance degrades when the number of rays
increases too much (particularly in the cases where the number of rays
is 20 on CUB-200-2011 and FFHQ) is that, in training, NeRF (including
AR-NeRF) is optimized using finite sample points. Consequently, overly
dense sampling in the inference phase can cause discrepancies from opti-
mized conditions. This may lead to degradation when the number of rays
increases too much. In other experiments, we found that the same phe-
nomenon occurs when the number of sample points along the ray increases
significantly.

Oxford Flowers 1 2 5 10 20 (5)

AR-NeRF 18.80 12.17 8.51 7.65 7.37 (7.86)

CUB-200-2011 1 2 5 10 20 (5)

AR-NeRF 13.25 8.92 6.97 6.72 7.19 (6.81)

FFHQ 1 2 5 10 20 (5)

AR-NeRF 15.92 8.26 4.26 3.79 4.08 (3.67)

Table 4. Changes in the KID↓ (×103) when the number of rays
varies within {1, 2, 5, 10, 20}. When calculating the scores from
the second to sixth columns, we randomly sampled the offsets of
ray origins, that is, u (Equation 3), in a disk of radius s (i.e., |u| ∈
[0, s]). Bold font indicates the best scores. When calculating the
scores in the last column, we used stratified sampling, as detailed
in Section 4.4. To distinguish them, we used parentheses for the
latter.

Results. We demonstrate this strength in Figure 5. These
results indicate that by using AR-NeRF, we can manipulate
viewpoints and defocus effects simultaneously and indepen-
dently in a unified framework.

A.4. Generation of higher-resolution images

In the experiments in the main text (Section 5), we used
64 × 64 images to examine various cases efficiently, fol-
lowing an AR-GAN study [8]. However, as discussed in
Appendix A.3, AR-NeRF is a natural extension of NeRF;
therefore, it can be applied to higher-resolution images with
an increase in calculation cost, similar to other generative
variants of NeRF, such as [1,22]. To validate this statement,
we applied AR-NeRF to the 128× 128 images.

Results. We provide the examples of generated images in
Figure 6. Following the experimental settings in the pi-
GAN study [1], we trained the model using 128 × 128 im-
ages and rendered the final results by sampling 512 × 512
pixels. We found that AR-NeRF can render the defocus ef-
fects, including changes in defocus strength and focus dis-
tance, reasonably well, even in higher-resolution images.

A.5. Application to defocus renderer

After training, AR-NeRF can generate images from ran-
domly sampled latent codes while varying the defocus
strength and focus distance with photometric constraints.
By utilizing these images, we can train a defocus renderer,
which, given an image, manipulates the defocus strength
and focus distance intuitively and continuously. We call this
renderer AR-NeRF-R. In particular, we implemented AR-
NeRF-R using a conditional extension of U-Net [21, 30],
which incorporates the aperture size s and focus distance
f as auxiliary information to control the image generation
based on them. We provide the implementation details in
Appendix C.2. In this section, we empirically investigate
the effectiveness of AR-NeRF-R.

2

Dataset. We used the Oxford Flowers dataset to train
AR-NeRF and AR-NeRF-generated images to train AR-
NeRF-R. In particular, for AR-NeRF, we used the model
discussed in Section 5. When training AR-NeRF-R, we
used 128 × 128 images generated by AR-NeRF, where
we increased the resolution of the generated images from
64× 64 to 128× 128 by increasing the density of the input
points (Section 5.2), to allow AR-NeRF-R to be applied to
128× 128 images. To confirm the generality of the learned
model, we evaluated it on a different dataset (iPhone2DSLR
Flower [29]), including photographs of flowers taken by
smartphones. We provide the details regarding the dataset
in Appendix C.2.
Comparison model. To the best of our knowledge, no pre-
vious method can learn the continuous representations of
defocus strength and focus distance from natural images
in the same setting as our own (i.e., without any supervi-
sion and any predefined model). Therefore, we used two
baselines that have partially the same objective. The first
baseline is CycleGAN [29], which trains a defocus ren-
derer using set level supervision.2 In contrast to AR-NeRF-
R, CycleGAN requires additional supervision to determine
whether each training image is an all-in-focus or focused
image. The second baseline is AR-GAN-DR [8], which can
train a defocus renderer without any supervision or pre-
trained model, similar to AR-NeRF-R; however, its conver-
sion is one-to-one, and it cannot adjust the defocus strength
and focus distance continuously.
Results. We present examples of the rendered images in
Figure 7. We found that CycleGAN often performs un-
necessary changes (e.g., color changes in the fifth row),
whereas AR-NeRF-R and AR-GAN-DR do not. We in-
fer that the aperture-rendering mechanisms in AR-NeRF
and AR-GAN contributed to this phenomenon. The dif-
ference between AR-GAN-DR and AR-NeRF-R is that in
AR-GAN-DR, the defocus strength and focus distance are
uniquely determined according to the input image, whereas
in AR-NeRF-R, we can change them continuously by vary-
ing the auxiliary information of aperture size s and focus
distance f . This new AR-NeRF-R functionality allows for
interactive selection of defocused images.

A.6. Fréchet inception distance

In the main text, we used KID because it has an unbiased
estimator and complements the flaws of other representa-
tive metrics (i.e., Fréchet inception distance (FID) [7] and
inception score (IS) [7]). However, the FID is a widely used
metric. For reference, we report the FID in Tables 5 and 6.
As also shown in a previous study [12], we found that KID
and FID had high correlations in this case. These results do
not contradict the statements in the main text.

2We used the pretrained model provided by the authors: https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

Oxford Flowers CUB-200-2011 FFHQ

FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

AR-GAN 20.4 11.23 24.0 14.30 10.4 5.75
AR-GAN++ 19.0 10.18 23.0 13.91 9.9 5.43
RGBD-GAN 20.8 12.04 24.6 14.92 11.6 6.73

AR-NeRF 17.1 7.86 17.0 6.81 7.8 3.67

Table 5. Comparison of FID↓ and KID↓ (×103) between base-
line GANs and AR-NeRF (ours). This table supplements Table 1.

Oxford Flowers CUB-200-2011 FFHQ

(B) (D) (V) FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

pi-GAN L 12.6 3.69 14.8 5.04 9.7 4.29
pi-GAN++ ✓ L 18.2 8.30 21.5 9.84 8.6 4.43

AR-NeRF-0 ✓ ✓ 0 15.2 6.81 20.1 8.67 8.0 3.83
AR-NeRF-F ✓ ✓ F – – – – 8.8 4.59
pi-GAN++-F ✓ F – – – – 9.8 5.06

AR-NeRF ✓ ✓ L 17.1 7.86 17.0 6.81 7.8 3.67

Table 6. Comparison of FID↓ and KID↓ (×103) between AR-
NeRF and ablated models. This table supplements Table 2.
Check marks (B) and (D) indicate the use of a background syn-
thesis network and defocus cue, respectively. In column (V), L,
F, and 0 indicate the use of local, full, and no viewpoint changes,
respectively.

Oxford Flowers CUB-200-2011 FFHQ

KID↓ SIDE↓ ∇d↓ KID↓ SIDE↓ ∇d↓ KID↓ SIDE↓ ∇d↓

AR-GAN 11.23 4.46 6.94 14.30 3.58 4.99 5.75 4.21 5.73
AR-GAN++ 10.18 4.42 7.01 13.91 3.61 4.99 5.43 4.88 7.37

AR-NeRF 7.86 3.94 3.54 6.81 3.63 3.39 3.67 2.61 2.24

Table 7. Comparison of KID↓ (×103), SIDE↓ (×102), and ∇d↓
(×102) among AR-GAN, AR-GAN++, and AR-NeRF (ours).
This table supplements Table 1.

A.7. Gradient of difference in depth

Figures 13–15 show that AR-GAN/AR-GAN++ yields
unexpected artifacts around the edge and surface; however,
SIDE can ignore this degradation because it measures the
difference based on l2, causing statistical averaging. This
may explain why the improvement in depth prediction by
AR-NeRF is not reflected in SIDE on the CUB-200-2011
dataset (Table 1), despite the qualitative difference (Fig-
ure 14). To validate this hypothesis, we calculated the gra-
dient of the difference between the ground truth and pre-
dicted depths (∇d), which is commonly used to examine
local structural similarity [4]. Table 7 lists the results and
shows that AR-NeRF can improve depth prediction even on
the CUB-200-2011 dataset in this metric.

3

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

D
ef

o
cu

s
st

re
n
g
th

W
ea

k
S

tr
o
n
g

Yaw

D
ep

th

F
o
cu

s
d
is

ta
n
ce

N
ea

r
F

ar

Pitch

D
ep

th

D
ef

o
cu

s
st

re
n
g
th

W
ea

k
S

tr
o
n
g

D
ep

th

F
o
cu

s
d
is

ta
n
ce

N
ea

r
F

ar

D
ep

th

D
ef

o
cu

s
st

re
n
g
th

W
ea

k
S

tr
o
n
g

D
ep

th

F
o
cu

s
d
is

ta
n
ce

N
ea

r
F

ar

D
ep

th

O
x
fo

rd
 F

lo
w

er
s

C
U

B
-2

0
0
-2

0
1
1

F
F

H
Q

Figure 5. Simultaneous control of viewpoint and defocus.

4

Defocus strength

Focus distance

Depth
Weak Strong

FarNear

Defocus strength Depth
Weak Strong

Focus distance
FarNear

Figure 6. Examples of 512× 512 image generation using AR-NeRF.

5

Defocus strength Focus distance

Weak Strong Near Far

Input

(c) AR-NeRF-R (ours)

+Defocus

(a) CycleGAN

Input +DefocusInput

(b) AR-GAN-DR

Figure 7. Comparison of defocus rendering among CycleGAN, AR-GAN-DR, and AR-NeRF-R (ours).

6

B. Additional qualitative results
In this appendix, we provide additional qualitative re-

sults that correspond to those presented in the main text.
Figure captions and their relationship to the results in the
main text are as follows:

• Figure 8: Unsupervised learning of depth and defo-
cus effects from unstructured (and view-limited) natu-
ral images. This figure is an extended version of Fig-
ure 1.

• Figure 9: Simultaneous control of defocus and latent
codes on the Oxford Flowers dataset. This figure is an
extension of Figure 1.

• Figure 10: Simultaneous control of defocus and latent
codes on the CUB-200-2011 dataset. This figure ex-
tends Figure 1.

• Figure 11: Simultaneous control of defocus and latent
codes on the FFHQ dataset. This figure is an extended
version of Figure 1.

• Figure 12: Comparison of generated images and
depths between AR-GAN++ and AR-NeRF. This fig-
ure extends Figure 3.

• Figure 13: Comparison of depth prediction on the Ox-
ford Flowers dataset. The depths are used to calculate
the SIDEs in Tables 1 and 2.

• Figure 14: Comparison of depth prediction on the
CUB-200-2011 dataset. The depths are used to cal-
culate the SIDEs in Tables 1 and 2.

• Figure 15: Comparison of depth prediction on the
FFHQ dataset. The depths are used to calculate the
SIDEs in Tables 1 and 2.

7

Defocus strength Focus distance Depth

Weak Strong Near Far

O
x

fo
rd

 F
lo

w
er

s
C

U
B

-2
0

0
-2

0
1
1

F
F

H
Q

Figure 8. Unsupervised learning of depth and defocus effects from unstructured (and view-limited) natural images. This figure is
an extended version of Figure 1. As shown here, our objective is to acquire a generator that can generate sets of images and depths using
only a collection of unstructured single images and without any supervision (e.g., ground-truth depth, pairs of multiview images, defocus
supervision, and pretrained models). In particular, in the generation of an image, we aim to obtain a generator that can intuitively and
continuously adjust the defocus strength and focus distance with photometric constraints.

8

D
ef

o
cu

s
st

re
n
g
th

W
ea

k
S

tr
o
n
g

z
1

z
2

Latent code

D
ep

th
F

o
cu

s
d
is

ta
n
ce

N
ea

r
F

ar

Figure 9. Simultaneous control of defocus and latent codes on the Oxford Flowers dataset. This figure is an extended version of
Figure 1. In AR-NeRF, aperture randomized training (Section 4.3) encourages the defocus effects and latent codes to capture independent
representations. By employing this characteristic, we can manipulate defocus effects and latent codes independently and simultaneously.

9

D
ef

o
cu

s
st

re
n
g
th

W
ea

k
S

tr
o
n
g

z
1

z
2

Latent code

D
ep

th
F

o
cu

s
d
is

ta
n
ce

N
ea

r
F

ar

Figure 10. Simultaneous control of defocus and latent codes on the CUB-200-2011 dataset. This figure is an extended version of
Figure 1. In AR-NeRF, aperture randomized training (Section 4.3) encourages the defocus effects and latent codes to capture independent
representations. By employing this characteristic, we can manipulate defocus effects and latent codes independently and simultaneously.

10

D
ef

o
cu

s
st

re
n
g
th

W
ea

k
S

tr
o
n
g

z
1

z
2

Latent code

D
ep

th
F

o
cu

s
d
is

ta
n
ce

N
ea

r
F

ar

Figure 11. Simultaneous control of defocus and latent codes on the FFHQ dataset. This figure is an extended version of Figure 1. In
AR-NeRF, aperture randomized training (Section 4.3) encourages the defocus effects and latent codes to capture independent representa-
tions. By employing this characteristic, we can manipulate defocus effects and latent codes independently and simultaneously.

11

Defocus strength Focus distance Depth

Weak Strong Near Far

O
x

fo
rd

 F
lo

w
er

s

AR-GAN++

C
U

B
-2

0
0

-2
0

1
1

F
F

H
Q

AR-GAN++

AR-GAN++

AR-NeRF
(ours)

AR-NeRF
(ours)

AR-NeRF
(ours)

Figure 12. Comparison of generated images and depths between AR-GAN++ and AR-NeRF (ours). This figure is an extended version
of Figure 3. We found that AR-NeRF can manipulate both the defocus strength and focus distance without producing significant artifacts.
In particular, it is worth noting that AR-NeRF can refocus on both the foreground (shown in the fifth column) and background (shown in the
second-to-last column), which are almost the same as those in the all-in-focus images (shown in the first column), by manipulating the focus
distance. By contrast, AR-GAN++ tends to yield unexpected artifacts (e.g., over-smoothing or discretization artifacts), particularly when
there is a strong defocus (shown in the fourth column) or refocus on the background (shown in the second-to-last column). As discussed
in the main text, the possible causes for these phenomena are: (1) AR-GAN++ discretely represents light fields in a 2D space; thus, the
discretization error becomes critical when a large manipulation is performed, and (2) the predicted depths (shown in the last column)
contain artifacts (e.g., holes emerge in the objects), resulting in errors when images are rendered based on the depths. The properties of
AR-NeRF, that is, (1) continuous representation in a 3D space and (2) joint optimization using defocus and viewpoint cues, are useful for
addressing these weaknesses.

12

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Image StereoAR-NeRFpi-GAN++pi-GAN AR-NeRF-0AR-GAN AR-GAN++ RGBD-GAN
(ours) (ours)

Figure 13. Comparison of depth prediction on the Oxford Flowers dataset. These depths are used to calculate the SIDEs in Tables 1
and 2. AR-GAN (b), AR-GAN++ (c), and RGBD-GAN (d) are CNN-based and are trained in a fully unsupervised manner. In addition, pi-
GAN (e), pi-GAN++ (f), AR-NeRF-0 (g), and AR-NeRF (h) are NeRF-based and trained in a fully unsupervised manner. By contrast, the
model in (i) [26] was trained using paired supervision and applied as the ground truth in the evaluation. The SIDEs in Tables 1 and 2 were
calculated by comparing the depths in (b)–(h) with the depths in (i). Our findings are summarized as follows: (1) Because AR-GAN (b) and
AR-GAN++ (c) only employ defocus (appearance) cues, their predicted depths are affected by their appearance. For example, in the second
row, the pattern in the petals affects depth prediction, despite its non-necessity. (2) RGBD-GAN (d) utilizes viewpoint (geometric) cues for
3D representation learning. However, there are few viewpoint cues in this dataset; consequently, this model has difficulty in learning depth.
(3) For the same reason, pi-GAN (e) and pi-GAN++ (f), which only employ viewpoint cues, suffer from learning difficulties, although
NeRF itself has a strong 3D consistency at the design level. In particular, they fail to consistently distinguish between the foreground
(flower) and background (surroundings), parts of which are often missing. (4) Although the results of AR-NeRF-0 (g) are closest to those
of AR-NeRF (h), AR-NeRF-0 (g) is often affected by the appearance (e.g., in the second row, similar to AR-GAN (b) and AR-GAN++ (c))
because it also leverages only focus cues. (5) AR-NeRF (h) overcomes the limitations of pi-GAN (e), pi-GAN++ (f), and AR-NeRF-0 (g)
by utilizing both the viewpoint and defocus cues.

13

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Image StereoAR-NeRFpi-GAN++pi-GAN AR-NeRF-0AR-GAN AR-GAN++ RGBD-GAN
(ours) (ours)

Figure 14. Comparison of depth prediction on the CUB-200-2011 dataset. These depths are used to calculate the SIDEs in Tables 1
and 2. AR-GAN (b), AR-GAN++ (c), and RGBD-GAN (d) are CNN-based and are trained in a fully unsupervised manner. In addition,
pi-GAN (e), pi-GAN++ (f), AR-NeRF-0 (g), and AR-NeRF (h) are NeRF-based and trained in a fully unsupervised manner. By contrast,
the model in (i) [26] was trained using paired supervision and was applied as the ground truth in the evaluation. The SIDEs in Tables 1 and
2 were calculated by comparing the depths in (b)–(h) with the depths in (i). Our findings are summarized as follows: (1) Because AR-GAN
(b) and AR-GAN++ (c) only employ defocus (appearance) cues, their predicted depths are affected by their appearance. For example, in
the fifth row, the horizontal boundary in the background is emphasized despite its non-necessity. (2) RGBD-GAN (d) utilizes viewpoint
(geometric) cues for 3D representation learning. However, there are few viewpoint cues in this dataset; consequently, this model has
difficulty in learning depth. (3) For the same reason, pi-GAN (e) and pi-GAN++ (f), which also only employ viewpoint cues, suffer from
learning difficulty, although NeRF itself has a strong 3D consistency at the design level. In particular, they fail to consistently distinguish
between the foreground (bird) and background (surroundings), parts of which are often mixed (e.g., in the third and fourth rows). (4)
Although the results of AR-NeRF-0 (g) are closest to those of AR-NeRF (h), AR-NeRF-0 (g) is often affected by the appearance (e.g.,
in the fifth row, similar to AR-GAN (b) and AR-GAN++ (c)) because it also only leverages focus cues. (5) AR-NeRF (h) overcomes the
limitations of pi-GAN (e), pi-GAN++ (f), and AR-NeRF-0 (g) by utilizing both the viewpoint and defocus cues.

14

Image Stereopi-GAN++pi-GAN AR-NeRF-0AR-GAN AR-GAN++ RGBD-GAN
(ours)

(a) (b) (c) (d) (e) (f) (h)

AR-NeRF

(ours)

(i) (k)

AR-NeRF-F

(ours)

(j)(g)

pi-GAN++-F

Figure 15. Comparison of depth prediction on the FFHQ dataset. These depths are used to calculate the SIDEs in Tables 1 and 2. AR-
GAN (b), AR-GAN++ (c), and RGBD-GAN (d) are CNN-based and are trained in a fully unsupervised manner. In addition, pi-GAN (e),
pi-GAN++ (f), pi-GAN++-F (g), AR-NeRF-0 (h), AR-NeRF (i), and AR-NeRF-F (j) are NeRF-based and trained in a fully unsupervised
manner. By contrast, the model in (k) [26] was trained using paired supervision and was applied as the ground truth in the evaluation. The
SIDEs in Tables 1 and 2 were calculated by comparing the depths in (b)–(j) with those in (k). Our findings are summarized as follows: (1)
In the depths predicted using AR-GAN (b) and AR-GAN++ (c), holes appeared in the face regions. This is because they can only adopt a
defocus cue, which is insufficient to distinguish a flat surface in a face from the blur caused by the defocus. (2) RGBD-GAN succeeded in
capturing the face direction in depth by leveraging the viewpoint cue (e.g., in the sixth and seventh rows); however, the depth fidelity was
low. This can occur because RGBD-GAN imposes 3D consistency only at a loss level and not at an architectural level. (3) By contrast, the
NeRF-based models (e)–(j) have 3D consistency at the architectural level, allowing high fidelity and consistent 3D depths to be predicted.
In particular, we found that the models utilizing viewpoint cues ((e)–(g), (i), and (j)) demonstrated similar performance. This is because
this dataset includes sufficiently varying viewpoints. (4) However, AR-NeRF-0 (h), which can only use the defocus cue, fails to capture
structures around the eyes. This is possibly because there is a large variety of appearances around the eyes, and it is difficult to model
the corresponding depth using only a defocus cue. We can overcome this limitation by jointly using viewpoint and defocus cues, as in
AR-NeRF (i) or AR-NeRF-F (j).

15

C. Implementation details
In this appendix, we provide implementation details re-

garding the following items:

• Appendix C.1: Details of the main experiments (Sec-
tion 5).

• Appendix C.2: Details of defocus renderer (Ap-
pendix A.5).

C.1. Details of main experiments (Section 5)

C.1.1 Dataset

In the experiments, we used three datasets, the detailed in-
formation of which is as follows:
Oxford Flowers [19]. The dataset consists of 8,189 images
with 102 flower categories. Each category includes 40 or
more images. The images were obtained by searching the
web and taking photographs. We downloaded the data from
an official website.3 More detailed information is provided
in the README file available on the website.
CUB-200-2011 [24]. The dataset contains 11,788 images of
200 bird species. The images were collected using a Flickr
image search and then filtered by presenting each image to
multiple users of Mechanical Turk [25]. We downloaded
the data from an official website.4 More detailed informa-
tion is provided in the technical report [24].
FFHQ (Flickr-Faces-HQ) [10]. The dataset consists of
70,000 face images. The images were crawled from Flickr.
Therefore, as the dataset creators [10] mention, the dataset
inherits all the biases of that website. The images were fil-
tered using automatic filters and Amazon Mechanical Turk.
Only images under permissive licenses (Creative Commons
BY 2.0, Creative Commons BY-NC 2.0, Public Domain
Mark 1.0, Public Domain CC0 1.0, or U.S. Government
Works license) were collected. The dataset itself is avail-
able under a Creative Commons BY-NC-SA 4.0 license by
the NVIDIA Corporation. We downloaded the data from an
official website.5 More detailed information is provided in
the README file available on the website.

C.1.2 Network architectures

As explained in Section 5.1, we implemented AR-NeRF
based on the pi-GAN [1],6 which is a state-of-the-art gener-
ative variant of NeRF. Because the original pi-GAN was not
applied to the datasets used in our experiments, we carefully
tuned the configurations and hyperparameters so that the

3https://www.robots.ox.ac.uk/˜vgg/data/flowers/
102/.

4http://www.vision.caltech.edu/visipedia/CUB-
200-2011.html.

5https://github.com/NVlabs/ffhq-dataset.
6https://github.com/marcoamonteiro/pi-GAN.

baseline pi-GAN could generate images sufficiently well.
In particular, we used the configuration of CelebA [14]7 as
the default and tuned depending on the dataset. We explain
the details of each network below.

Mapping network. In pi-GAN, a StyleGAN [10]-inspired
mapping network was introduced to efficiently propagate
information in the latent code to each layer. We imple-
mented this network using an MLP with three hidden layers
(256 units each). We used leaky rectified linear units (LRe-
LUs) [15] with a negative slope of 0.2 as activation func-
tions. The dimension of the latent code was set to 256. This
architecture is the same as that of the original pi-GAN [1].

Synthesis network. In pi-GAN, SIREN [23]-based implicit
radiance fields are used as a synthesis network. We imple-
mented this network using an MLP with eight FiLM [3,20]-
SIREN hidden layers of 128 units each. In the original pi-
GAN [1], 256 units were used in each layer; however, in
our preliminary experiments, we found that the reduction in
the units did not significantly affect the performance. In ad-
dition, this reduction allowed the use of a larger number of
points along the ray, which is critical for improving perfor-
mance. Considering this, we used 128 units in our exper-
iments. In pi-GAN++ and AR-NeRF, we used the above-
mentioned network as a foreground synthesis network and
used a background synthesis network. We implemented
the latter network using an MLP with eight FiLM-SIREN
hidden layers of 64 units each. We used fewer parameters
in the background synthesis network under the assumption
that the background is simpler than the foreground.

Discriminator. We used different discriminators accord-
ing to the dataset. For FFHQ, we used the same discrim-
inator as that used in pi-GAN for CelebA.7 The discrimi-
nator was implemented using CoordConv layers [13] and
residual blocks [6]. In our preliminary experiments, we
found that the CoordConv layers yield negative effects for
Oxford Flowers and CUB-200-2011. A possible cause is
that in FFHQ, faces are aligned based on facial landmarks,
whereas in Oxford Flowers and CUB-200-2011, flowers
and birds are not strictly aligned. Based on this finding,
we removed the CoordConv layers from the discriminator
when applied to Oxford Flowers and CUB-200-2011.

C.1.3 Training settings

We used different training settings according to the dataset.
For FFHQ, we used the same setting as that in pi-GAN for
CelebA.7 More specifically, as the GAN objective, we used
the non-saturating GAN loss [5] with real gradient penalty
(R1) regularization [16], where the weight parameter of the
R1 regularization was set to 0.2. Additionally, we used an

7https://github.com/marcoamonteiro/pi-GAN/blob/
master/curriculums.py.

16

https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://github.com/NVlabs/ffhq-dataset
https://github.com/marcoamonteiro/pi-GAN
https://github.com/marcoamonteiro/pi-GAN/blob/master/curriculums.py
https://github.com/marcoamonteiro/pi-GAN/blob/master/curriculums.py

identity regularizer [18] with the weight parameter of 15
to keep the identity across different viewpoints. The net-
work was trained for 200,000 iterations using the Adam op-
timizer [11], with learning rates of 0.00006 and 0.0002 for
the generator and discriminator, respectively, and momen-
tum terms β1 and β2 of 0 and 0.9, respectively. The batch
size was set to 16. We used an exponential moving aver-
age [9] with a decay of 0.999 over the weights to generate
the final generator. In pi-GAN, we set the number of sam-
ple points along the ray to 48, where 32 and 16 points were
used for stratified sampling and hierarchical sampling, re-
spectively. In pi-GAN++ and AR-NeRF, we set the values
for the foreground and background synthesis networks as
48 and 24, respectively. In the foreground synthesis, 32 and
16 points were used for stratified sampling and hierarchi-
cal sampling, respectively. In the background synthesis, 16
and 8 points were used for stratified sampling and hierarchi-
cal sampling, respectively. A field of view was set to 12◦.
As discussed in Section 5.3, we used the same number of
rays in all models to investigate the pure performance differ-
ences between the models with and without aperture render-
ing. Specifically, we used five stratified sampled rays (Sec-
tion 4.4) in AR-NeRF and five ensemble rays (i.e., five rays
with an aperture size s = 0) in pi-GAN and pi-GAN++.

For Oxford Flowers and CUB-200-2011, we also used
differentiable augmentation [28]8 to stabilize the training.
In particular, we used color jittering, translation, and cutout
[2] for Oxford Flowers, and translation for CUB-200-2011
because we found that they were the best choice. We re-
moved the identity regularizer [18] because we found that
it yields negative effects for Oxford Flowers and CUB-200-
2011. The other settings were the same as those for FFHQ.

C.1.4 Evaluation

As described in Section 5.1, we calculated KID using
20,000 generated images and all real images. We imple-
mented a KID calculator based on the official code.9 We
implemented the depth predictor, which was trained with
images and depth generated by GANs, and used it to calcu-
late the SIDE using U-Net [21]. In particular, we used the
same network and training settings as those used in the AR-
GAN study [8] for direct comparison. pi-GAN++ and AR-
NeRF can synthesize the unbounded background (or depth)
by using a NeRF++ [27]-based background synthesis net-
work; however, the predictable depth range is bounded in a
typical depth predictor, including the model [26] that was
used as “ground truth” in our experiment. Therefore, we
used only the foreground synthesis network when calculat-
ing the SIDE.

8https : / / github . com / mit - han - lab / data -
efficient-gans.

9https://github.com/mbinkowski/MMD-GAN.

C.2. Details of defocus renderer (Appendix A.5)

C.2.1 Dataset

In the experiment, we used a test set of the iPhone2DSLR
Flower [29] for the evaluation. Its detailed information is
as follows:
iPhone2DSLR Flower [29]. The dataset includes 2,381
smartphone images and 3,805 DSLR images. The smart-
phone images were collected from Flickr by searching for
photos taken by Apple iPhone 5, 5s, or 6, with the search
text “flower.” DSLR images with a shallow depth-of-field
(DoF) were also collected from Flickr using the search tags
“flower” and “dof.” We downloaded the data from an of-
ficial website.10 More detailed information is provided on
the website and appendix of the corresponding paper [29].

C.2.2 Network architectures

We implemented AR-NeRF-R using basically the same net-
work as AR-GAN-DR [8], that is, we used the U-Net archi-
tecture [21]. A difference from AR-GAN-DR is that we
extended U-Net to a conditional setting [30]. Specifically,
we injected the aperture size s and focus distance f into ev-
ery intermediate layer in the encoder after expanding them
to the corresponding feature map size.

C.2.3 Training settings

We generated training data (i.e., pairs of all-in-focus and
focused images with auxiliary information on aperture size
s and focus distance f) using AR-NeRF, which was trained
using 64 × 64 images on the Oxford Flowers dataset. AR-
NeRF was the same as that used to generate the samples in
Figures 1 and 3. When training AR-NeRF-R, we used 128×
128 images generated by AR-NeRF, where we increased the
resolution of the generated images from 64 × 64 to 128 ×
128 by increasing the density of input points (Section 5.2).
We trained the defocus renderer for 300,000 iterations using
the Adam optimizer [11] with a learning rate of 0.0003 and
momentum terms β1 and β2 of 0.9 and 0.99, respectively.
The batch size was set to 4. The learning rate was kept
constant during training, except for the last 30% iterations,
where the learning rate was smoothly ramped down to zero.

10https://github.com/junyanz/CycleGAN.

17

https://github.com/mit-han-lab/data-efficient-gans
https://github.com/mit-han-lab/data-efficient-gans
https://github.com/mbinkowski/MMD-GAN
https://github.com/junyanz/CycleGAN

References
[1] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. pi-GAN: Periodic implicit genera-
tive adversarial networks for 3D-aware image synthesis. In
CVPR, 2021. 2, 16

[2] Terrance DeVries and Graham W. Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 17

[3] Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian
Strub, Harm de Vries, Aaron Courville, and Yoshua Bengio.
Feature-wise transformations. Distill, 3(7):e11, 2018. 16

[4] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convo-
lutional architecture. In ICCV, 2015. 3

[5] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.
16

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 16

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a
Nash equilibrium. In NIPS, 2017. 3

[8] Takuhiro Kaneko. Unsupervised learning of depth and
depth-of-field effect from natural images with aperture ren-
dering generative adversarial networks. In CVPR, 2021. 2,
3, 17

[9] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. In ICLR, 2017. 17

[10] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 16

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 17

[12] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michal-
ski, and Sylvain Gelly. A large-scale study on regularization
and normalization in GANs. In ICML, 2019. 3

[13] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski
Such, Eric Frank, Alex Sergeev, and Jason Yosinski. An
intriguing failing of convolutional neural networks and the
CoordConv solution. In NeurIPS, 2018. 16

[14] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015.
16

[15] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rec-
tifier nonlinearities improve neural network acoustic models.
In ICML Workshops, 2013. 16

[16] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually converge? In
ICML, 2018. 16

[17] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[18] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised
learning of 3D representations from natural images. In ICCV,
2019. 17

[19] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
ICVGIP, 2008. 16

[20] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. FiLM: Visual reasoning with
a general conditioning layer. In AAAI, 2018. 16

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015. 2, 17

[22] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: Generative radiance fields for 3D-aware im-
age synthesis. In NeurIPS, 2020. 2

[23] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. In NeurIPS, 2020.
16

[24] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The Caltech-UCSD Birds-200-
2011 Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology, 2011. 16

[25] Peter Welinder, Steve Branson, Pietro Perona, and Serge Be-
longie. The multidimensional wisdom of crowds. In NIPS,
2010. 16

[26] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin,
and Zhiguo Cao. Structure-guided ranking loss for single
image depth prediction. In CVPR, 2020. 13, 14, 15, 17

[27] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. NeRF++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 17

[28] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient GAN
training. In NeurIPS, 2020. 17

[29] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. 3, 17

[30] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A. Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. In NIPS, 2017.
2, 17

18

	. Detailed analyses
	. Importance of learning defocus effects
	. Effect of aperture ray sampling scheme
	. Simultaneous control of viewpoint and defocus
	. Generation of higher-resolution images
	. Application to defocus renderer
	. Fréchet inception distance
	. Gradient of difference in depth

	. Additional qualitative results
	. Implementation details
	. Details of main experiments (Section 5)
	Dataset
	Network architectures
	Training settings
	Evaluation

	. Details of defocus renderer (Appendix A.5)
	Dataset
	Network architectures
	Training settings

