
Supplementary Material for PILC: Practical Image Lossless Compression with
an End-to-end GPU Oriented Neural Framework

Ning Kang 1* Shanzhao Qiu 2* Shifeng Zhang 1 Zhenguo Li 1† Shutao Xia 2†

1 Huawei Noah’s Ark Lab 2 Tsinghua University
kang.ning2@huawei.com, qiusz20@mails.tsinghua.edu.cn

A. Coder Design
With the same notation as ours, the original rANS can be

written as:

Encoding: S ← 2M × ⌊S/Px⌋+ Cx + S mod Px (1)

Decoding: S ← Px × ⌊S/2M⌋+ S mod 2M − Cx (2)

Where in decoding, same as the modified one, to get x, bi-
nary search is also needed to be applied on S mod 2M .

Let n be the message length, if applying Eq. (1) and
Eq. (2) directly, the time complexity is O(n2). So in real
applications, S is usually truncated to a range, such as
[232, 264), reducing the time complexity to O(n) for encod-
ing and O(n logX) for decoding, with minor reduction in
compression ratio. However, it is still not efficient enough
for real-time applications due to:

• Px and Cx need to be calculated online for each x.
• One division operation and one modular operation are

required for encoding.
• Binary search is needed for decoding.
In this work, S is truncated to [2M , 2M+1), which

boosts the efficiency, but affects the compression ratio more
severely, and more memory is needed. In next subsections,
we prove that the BPD loss and memory are both upper-
bounded by an acceptable value.

A.1. BPD loss for ANS-AI

Lemma 1. BPD for the ANS-AI is at most 2− log2 e worse
than the original rANS.

Proof. As ANS-AI and the modified rANS are numerically
equivalent, it suffices to prove the effectiveness of the lat-
ter. Without loss of generality, assume quantization for pdf
values does not introduce bias in density estimation, which

*Equal contribution.
†Correspondence to: Zhenguo Li (li.zhenguo@huawei.com) and

Shutao Xia (xiast@sz.tsinghua.edu.cn).

means p(x = i) = Pi/2
M for all i, otherwise both original

and modified ones are affected by the same way. Also each
symbol x is independent of each other. Unless specified
otherwise, all log in this material means logarithm function
with base 2. Then from Shannon’s source coding theorem:

BPD(rANS) ≥
∑

i Pi × log 2M/Pi

2M

= M −
∑

i Pi × logPi

2M

(3)

For the ANS-AI, BPD value equals to the expected num-
ber of bits to push to steam during encoding. The value S
before each encoding is uniform in [2M , 2M+1) since Pi is
proportional to p(x = i). Therefore:

BPD(ANS AI) =
∑

j∈[2M ,2M+1)

∑
i Pi × ⌊log(j/Pi)⌋/2M

2M

≤
∑

j∈[2M ,2M+1)

∑
i Pi × log(j/Pi)

22M

=

∑
j∈[2M ,2M+1) log j

2M
−

∑
i Pi × logPi

2M

≤
∫ 2M+1

2M
log j

2M
−

∑
i Pi × logPi

2M

= M + 2− log e−
∑

i Pi × logPi

2M
(4)

Bring Eq. (3) and Eq. (4) together, we get

BPD(ANS AI)− BPD(rANS) ≤ 2− log e (5)

A.2. Memory consumption for ANS-AI

Lemma 2. In our frame work, when M ≤ 12, δ can be
represented as an 16 bit unsigned integer.

Proof. Let k be the integer such that Px × 2k ∈
[2M , 2M+1). In our framework, it always satisfies that

1



Table 1. Throughput & decomposition of time for the whole compression/ decompression process on CIFAR10 of CPU Coder and GPU
Coder. Throughput is calculated with respect to the size of the original data. Time is measured as µs per image.

CPU Coder GPU Coder

Phase
Throughput

(MB/s)
Time
(µs) Phase

Throughput
(MB/s)

Time
(µs)

Compress

RAM to GPU 9186 0.33 RAM to GPU 9246 0.33
Model Inference 276 11.12 Model Inference 276 11.11

GPU to RAM 1158 2.65 Coder Encode 675 4.55
Coder Encode 873 3.52 GPU to RAM 2985 1.03

Total 174 17.62 Total 180 17.02

Decompress

Coder Decode 5932 0.52 RAM to GPU 11101 0.28
Latent to GPU 96254 0.03 Coder Decode 11091 0.28

VQ-VAE Decode 720 4.27 VQ-VAE Decode 721 4.26
Distribution to RAM 2426 1.27 Coder Decode 672 4.57

Coder Decode 624 4.93 AR Decode 869 3.53
Residual to GPU 8867 0.35 GPU to RAM 2521 1.20

AR Decode 849 3.62 - - -
GPU to RAM 2515 1.22 - - -

Total 186 16.21 Total 217 14.12

Px ∈ [1, 2M−1), thus k ∈ [2,M ]. Therefore:

⌊δ[d, x] + S

2M
⌋ =

{
k S ∈ [Px × 2k, 2M+1)

k − 1 S ∈ [2M , Px × 2k)
(6)

Then it suffices to prove that when δ[d, x] = k × 2M −
Px × 2k, both unsigned 16 bit constraint and Eq. (6) are
satisfied.

1. δ[d, x] < k×2M−2M < (M−1)×2M ≤ 11×212 <
216, and δ[d, x] ≥ 2× 2M − Px × 2k > 0. Therefore
δ[d, x] is in range of unsigned 16 bit integer.

2. If S ∈ [Px × 2k, 2M+1), then δ[d, x] + S ≥ δ[d, x] +
Px× 2k = k× 2M , and δ[d, x] +S < k× 2M −Px×
2k +2M+1 ≤ k×2M −2M +2M+1 = (k+1)×2M .
Therefore, in this case, ⌊ δ[d,x]+S

2M
⌋ = k.

3. If S ∈ [2M , Px×2k), then δ[d, x]+S < δ[d, x]+Px×
2k = k × 2M , and δ[d, x] + S >= k × 2M − Px ×
2k + 2M > k × 2M − 2M+1 + 2M = (k − 1)× 2M .
Therefore, in this case, ⌊ δ[d,x]+S

2M
⌋ = k − 1.

Corollary 2.1. In general, when M ≤ 11, δ can be repre-
sented as a 16 bit signed integer.

If one is using distributions different from us, then the
range of Px may changed to [1, 2M ), which means the prob-
ability of one symbol may be at least 0.5, then the condition
is changed to the one shown in Corollary 2.1. The proof is
almost the same with Lemma 2.

Threads
Throughput

rANS (MB/s)
Throughput

ANS-AI (MB/s)

Encode

1 5.1 81.7
4 10.8 239.0
8 15.9 433.9
16 21.6 598.8

Decode

1 0.8 122.0
4 2.8 467.9
8 5.5 925.9
16 7.4 1190.0

Table 2. Throughput comparison of rANS and ANS-AI. To gen-
erate the test data, first 8 logistic distributions are fixed. For each
symbol, we first select a distribution uniformly randomly, and then
sample data according to the distribution.

Corollary 2.2. When M ≤ 12, ANS-AI encoding requires
4 × D × X bytes of memory, and decoding requires D ×
2M+2 bytes.

A.3. Speed comparison of rANS and ANS-AI

We compare the speed of rANS coder and ours in the
same machine as stated in experiment section of the main
body. For fair comparison, both coders are implemented
using C++ with OpenMP, and run on CPU. As is shown in
Tab. 2, ANS-AI is 10 to 100 times faster than rANS.



Table 3. The effect of different codebook size, dimension and
model capacity. Theoretical BPD and throughput on CIFAR10 are
reported.

Mid Channel
Dim

Blocks
Codebook

BPD
Throughput

(MB/s)Size Dim

32 4 256 32 4.17 277
32 4 128 32 4.19 306
32 4 256 16 4.18 293
32 4 256 64 4.18 249
32 4 512 32 4.19 232
32 4 512 64 4.19 210

32 8 256 32 4.16 177
64 4 256 32 4.14 132
64 8 256 32 4.10 74
64 16 256 32 4.06 41

Table 4. Ablation study on the receptive field of AR model and the
parallel mechanism. Theoretical BPD and decompress throughput
on CIFAR10 (red channel) are reported. Receptive field means the
current point is predicted by how many previous points.

Receptive Field BPD
Throughput

(MB/s)

3 (with parallel) 5.7714 382.5
3 5.7714 48.5
4 5.7737 47.5
5 5.7708 46.0
6 5.7701 44.8
7 5.7449 44.0

B. GPU Coder vs CPU Coder
We use the same algorithm we designed to create a CPU

Coder. As shown in Tab. 1, we compare the composition
throughput between CPU Coder and GPU Coder. The CPU
Coder is set to 16 threads. We duplicate the CIFAR10 vali-
dation set for ten times for experiment.

Compress. In terms of compression time, the through-
put of CPU and GPU coders is comparable because both
require two RAM-GPU transfers. We notice that GPU to
RAM time is different between the two Coder. Because
the residual data, latent data, and distribution parameters
must all be transferred from GPU to RAM for CPU Coder,
but only compressed data must be transferred from GPU to
RAM for GPU Coder, which takes less time.

Decompress. The CPU Coder requires two additional
RAM-GPU transfers during decompression because the
Coder decoding is done on the CPU. The CPU Coder de-
codes latent vector indexes before sending them to the GPU.
Then we need to transmit the distribution parameters to
RAM after VQ-VAE decodes them. The residual is then de-
coded by the Coder and passed back to the GPU. The Three-

Table 5. Different settings of how to predict residual distribution.
i.e., different inputs of VQ-VAE. We use original image, recon-
struction image, residual, and original image concatenated with
residual to predict the residual.

Given BPD

Original Image 4.17
Reconstruction Image 4.23
Residual 4.19
Origanl Image concat Residual 4.17

4 5

6 7

Figure 1. The receptive field rules of the auto-regressive model.
Receptive field from 4 to 7.

Way Auto-regressive recovers original data from residual
data. The GPU Coder, on the other hand, only requires two
RAM-GPU transfers, and all Coder decoding is done on the
GPU, which saves a lot of time.

C. Model architecture
We do further experiments to see how different codebook

sizes and dimensions affect the results. A large codebook
size or codebook dimension favors the BPD but reduces per-
formance, as seen in Tab. 3. A tiny codebook size or code-
book dimension does indeed produce substantially faster
throughput, but it would contains relatively little informa-
tion when applying our model to high resolution images.
As a result, on codebook size/dimension, there is a trade-off
between BPD and throughput. To balance the trade-off, we
set the codebook size to 256 and the codebook dimension
to 32 in our framework.

We investigate the impact of various model capacities.
We modify the number of residual block and the mid chan-
nel dimension to change the model capacity. As shown
in Tab. 3, the larger model achieves lower BPD, but the
throughput of the model drops even faster, which deviates
from the ’practical’ aim. As a result, we adjust our model
to 4 residual blocks and 32 mid channel dimensions.



D. Receptive field rules of AR model
Figure 1 demonstrates the receptive field rules of the

auto-regressive model on a single channel which we use in
the ablation study. As the figure suggests, these receptive
field settings cannot be parallelized using what we imple-
ment in Three-Way Auto-regressive.

E. Parallel vs No Parallel
We add the experiment result of Three-Way Auto-

regressive without parallel. As shown in Tab. 4, Three-
Way Auto-regressive using our designed parallel mecha-
nism achieves the fastest throughput with competitive com-
pression ratio.

F. Why predict residual given original image?
We investigate the different input of VQ-VAE model.

We use the original image, reconstruction image, residual,
and original image concatenated with residual to predict the
residual. As illustrated in Tab. 5, directly using residual to
predict residual is not the best solution. As the original im-
age has a lot of spatial information, we choose to model the
residual given original image.


