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1. Implementation Details
1.1. Feature Preprocessing

Initial features, which are taken into our custom encoder,
are extracted from pretrained feature extractors. To be spe-
cific, we tested two feature extractors in our paper, includ-
ing the image-level model, ImageNet [1] pretrained ResNet-
50 [3] and the snippet-level model,Kinetics [4] pretrained
TSN [9]. For competition1 setting, we utilized additional
feature extractors including kinetics pretrained SlowFast [2]
network, yielding additional performance gain.

For all videos in the dataset, we preprocess them to be
24 fps so that each frame have the same temporal duration
(1/24 seconds). After that, we sample the frames uniformly
with the stride 6, making each feature have the temporal
duration of 0.25 seconds. Since the play time of the video
ranges from 0 to 10 seconds, we set the input features to
have the length 40 so that the input features can represent
maximum to 10 seconds. For the videos shorter than 10
seconds, we pad the features with the last feature vector.
As a consequence, the input for our models have the shape
of (40, 2048) with the ResNet-50 extractor, and (40, 4096)
with the TSN extractor.

1.2. Model Architecture

For clear explanation, schematic diagram of our model’s
architecture is provided (Figure 1). Basically, we adopted
multi-channel TSM approach, even though it is mean-
pooled through channel dimension in UBoCo. Recall that
Recursive TSM Parsing (RTP) algorithm, which is essential
for UBoCo, cannot take multi-channel input.

For each encoder, we incorporated different architec-
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Figure 1. Detailed architecture of encoder/TSM decoder of
UBoCo/SBoCo. Both UBoCo and SBoCo shares the same en-
coder architecture, but multi-channel TSM is average pooled for
UBoCo (dotted line heading to “UBoCo”), whereas original multi-
channel form is directly used for SBoCo. “E” sign in “E1, E2, E3,
E4” stands for “Encoder”, and different architecture is applied for
each encoder.

tures that have different “receptive field”. For instance,
we used 1d-convolutional neural network with kernel size
1 for short-term encoder E1, while Mixer [7] is applied for
long-term encoder E4. For middle-term encoder E2 and E3,
multi-layered 1d convolutional neural network with differ-
ent depth is utilized, These various encoders with different
receptive fields would catch different aspects of similarity
among features, enriching the multi-channel TSM. Espe-
cially for long-term encoder, we conducted ablation study
in Section 2.3.

For the TSM decoder, we used conventional ResNet [3]
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Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.

SceneDetect 27.5 30.0 31.2 31.9 32.4 32.7 33.0 33.2 33.4 33.5 31.88
PA-Random 33.6 43.5 48.4 51.2 52.9 54.1 54.8 55.4 55.8 56.1 50.58

PA 39.6 48.8 52.0 53.4 54.4 55.0 55.5 55.8 56.1 56.4 52.70
(ours) UBoCo-Res50 70.3 83.9 86.2 88.5 88.9 89.3 89.4 89.8 90.0 90.2 86.65
(ours) UBoCo-TSN 70.2 84.6 86.2 87.9 88.8 88.9 89.5 89.7 90.4 90.5 86.67

Super.

BMN 18.6 20.4 21.3 22.0 22.6 23.0 23.3 23.7 23.9 24.1 22.29
BMN-StartEnd 49.1 58.9 62.7 64.8 66.0 66.8 67.4 67.8 68.1 68.3 63.99
TCN-TAPOS 46.4 56.0 60.2 62.8 64.5 65.9 66.9 67.6 68.2 68.7 62.72

TCN 58.8 65.7 67.9 69.1 69.8 70.3 70.6 70.8 71.0 71.2 68.52
PC 62.5 75.8 80.4 82.9 84.4 85.3 85.9 86.4 86.7 87.0 81.73

(ours) SBoCo-Res50 73.2 82.7 85.3 87.7 88.2 89.1 89.4 89.9 89.9 90.7 86.61
(ours) SBoCo-TSN 78.7 86.0 88.4 90.5 90.7 90.7 91.1 91.7 91.8 92.2 89.18

Table 1. F1 results on Kinetics-GEBD for various unsupervised and superivsed GEBD methods including our UBoCo and SBoCo.

Gap UBoCo-Res50 UBoCo-TSN
2 27.4 43.4
4 69.5 -
6 69.3 -
8 70.3 70.2

10 68.8 -
12 68.2 -
32 63.0 59.4

Table 2. F1@0.05 scores with various gap hyperparameter.

and Transformer [8] architecture. While other submodules
are quite straightforward, note that only diagonal elements
of the ResNet output, or feature map are taken as the input
to transformer network (Figure 1 (b)). In the procedure, the
tensor shape of the feature map turns into (B,C,L, L) to
(B,C,L), where B stands for batch size, C means channel
number, and L denotes the TSM’s width/height.

2. Additional Experiments
In this section, we demonstrate additional ablation stud-

ies that justify our proposed approach. To reduce variance,
all the experimental results, including results in the main
paper, are the mean values of 5 different experiments with
different random seeds.

Before we start, full table following [6]’s threshold con-
vention is provided (Table 1) for clear demonstration of
UBoCo / SBoCo’s superior performance.

2.1. Local similarity prior

As we mentioned in the main paper, “gap” is the hy-
perparameter to materialize our local similarity assumption.
Unlike semantic coherency prior, the local similarity as-
sumption can be seen as nonessential since UBoCo can be

Mean Difference
0.0 1.0

UBoCo-Res50
f1 68.1 70.3 (+2.2)

precision 57.0 64.8 (+7.8)
recall 84.5 76.8 (-7.7)

UBoCo-TSN
f1 68.1 70.2 (+2.1)

precision 57.1 64.8 (+7.7)
recall 84.4 76.6 (-7.8)

Table 3. Changes of the f1, precision, and recall scores according
to the different mean difference values.

conducted solely based on semantic coherency mask. To
validate its functionality, we conducted an ablation study
about the gap hyperparameter. The results can be seen in
the Table 2 and as we expected, inappropriate gap size does
not bring the best result. For an excessively large gap, there
would be many improper positive pairs and trivial negative
pairs, while a small gap results in too restrictive ones. Ade-
quate gap size (in our experiment, 8) prevents this phenom-
ena, yielding the best f1 score.

2.2. Mean Difference

Mean difference is the hyperparameter that forces the
RTP algorithm to be terminated before the parsed TSM size
is smaller than the predefined threshold T1. (Detailed ex-
planation can be found in the main paper’s Section 3.2.1)
The above termination condition is posed to make RTP not
split the TSM that does not have any distinctive boundary
score. With this, the RTP algorithm selects the boundaries
more conservatively, suppressing false positives. Table 3
shows the experimental result of the ablation study about
mean difference condition. As the algorithm being conser-
vative, the precision score increases while the recall score
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Long-term BoCo loss SBoCo-Res50 SBoCo-TSN
71.7 77.6

✓ 71.8 (+0.1) 77.5 (-0.1)
✓ 72.2 (+0.5) 78.1 (+0.5)

✓ ✓ 73.2 (+1.5) 78.7 (+1.1)

Table 4. F1 scores for the different combinations of long-term
encoder layer and BoCo loss.

drops. However, as the balance between precision and re-
call gets better, we can achieve 2% improvement in the f1
score, the most important measure in our task.

2.3. Long-term Layer

To justify the utility of long-term encoder (E4 in Fig-
ure 1 (a)) and auxiliary BoCo loss in supervised setting, we
conducted an ablation study about them. Overall result can
be found in the Table 4. As the second row in the Table 4
shows, only adding the long-term layer does not improve
the model performance, implying that the BCE loss alone is
not sufficient to train the model with less inductive bias. On
the other hand, sole BoCo loss brings meaningful improve-
ment on the F1 score in both feature settings. (third row in
Table 4) However, the best performance is achieved when
both long-term encoder and BoCo loss are deployed (fourth
row in Table 4), indicating that long-term encoder and aux-
iliary BoCo loss may have mutually beneficial relationship.

3. Additional Discussion
3.1. Claryfying BoCo Loss

For clarity, we explicitly put formal description of BoCo
loss below. Let ik and jk denote a kth positive/negative
sample’s similarity score respectively, and m and n rep-
resent the number of positive/negative samples. Then, the
contrastive loss term Lcontra is defined as follows:

Lcontra =
1

m

m∑
k=1

jk − 1

n

n∑
k=1

ik. (1)

3.2. Cross Validation

To validate our method’s generalization ability, we
conducted slightly modified cross-validation on TAPOS
dataset [5], the dataset for temporal action parsing. As
event boundary annotations of TAPOS dataset does not co-
incide with GEBD concept, we cannot evaluate our method
with TAPOS annotation. Instead, we trained our UBoCo
model with unlabeled TAPOS videos, and evaluated the
model with Kinetics-GEBD validation videos and annota-
tions. Not surprisingly, we observed almost no performance
drop (69.2 F1@0.05, ResNet50 feature), which supports
our method’s generalizability and transferability.
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