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1. Overview

Section 2 describes our SSL-Training method in detail.
Section 3 discusses the findings of our ablation studies. Sec-
tion 5 has some details about hyperparameter settings and
experimental results.

2. SSL-Training Details

Before semi-supervised learning (SSL), we separate the
training set into Dclean and Dnoisy by applying uniform se-
lection. A sample training set with 60% noise level is shown
in Figure 1. We consider Dclean and Dnoisy to be labeled
and unlabeled data, respectively. At the beginning of SSL,
we create four sets of weakly-augmented (WA) data:

• Two sets of weakly-augmented labeled data
{x̂weak

i,1 , x̂weak
i,2 : i ∈ (1, ..., N)}.

• Two sets for weakly-augmented unlabeled data
{ûweak

i,1 , ûweak
i,2 : i ∈ (1, ..., N)}.

In addition, we also generate four sets of strongly-
augmented (SA) data:

• Two sets of strongly-augmented labeled data
{x̂strong

i,1 , x̂strong
i,2 : i ∈ (1, ..., N)}.

• Two sets of strongly-augmented unlabeled
{ûstrong

i,1 , ûstrong
i,2 : i ∈ (1, ..., N)}.

Here, weak augmentations are used for label updating
(label-refinement and pseudo-label guessing). We employ
strong augmentations for updating the network parameters
using backpropagation. For label-refinement [7], we use the
networks’ prediction to a weakly-augmented sample xi for
refining the given-label yi. For {x̂weak

i,1 , x̂weak
i,2 }, the output

probabilities can be written as,

pi =
1

2

2∑
m=1

h(f(x̂weak
i,m ; θ(k));ϕ(k)), (1)

where N is the number of data points in the training set
and h(f(x̂weak

i,m ; θ(k));ϕ(k)) is the Softmax probabilities of
network-k (k=1,2) corresponding to x̂weak

i,m .
After getting pi, we refine the label as follows:

ȳi = wiyi + (1− wi)pi, (2)

where wi is the label refinement coefficient. However, wi

can be calculated from the JSD values as,

wi =

{
1− di, if di ≥ dω
1, otherwise (3)

where dω is the label-refinement threshold that adjusts wi

based on the JSD of sample xi. Next, we follow the tem-
perature sharpening [7] step given that gives us ŷi.

Similarly, we calculate pseudo-label by averaging the
predictions of both networks [7], i.e.

q̄b =
1

4

2∑
m=1

(
h(f(ûweak

b,m ; θ(1));ϕ(1))+h(f(ûweak
b,m ; θ(2));ϕ(1))

)
(4)

and apply temperature sharpening on it to get qb.
We aggregate the labeled and unlabeled images with

their ground-truth labels and pseudo-labels, respectively.
That is, X̂ = {(x̂strong

i,m , ŷi); i ∈ (1, ..., N),m = (1, 2)},
and Û = {(ûstrong

i,m ,qi); i ∈ (1, ..., N),m = (1, 2)} are the
labeled and unlabeled sets. We use MixMatch [2] to have

W = Shuffle
(
Concat(X̂ , Û)

)
, (5)

X̂ =
(
MixUp(X̂i,Wi); i ∈ (1, . . . , |X̂ |)

)
, (6)

Û =
(
MixUp(Ûi,Wi+|X̂ |); i ∈ (1, . . . , |Û |)

)
. (7)

1



Given label:    Shawl                                    T-Shirt Hoodie                                     Shirt Suit

Label Noise: ✓ ✘✘ ✓ ✓

Figure 1. Sample images from Clothing1M [16] dataset. We show the given label (bottom) and indicate label noise (top) for each image.
Noisy samples are marked as positive (red) while clean samples contain negative marks (green). Here, the noise rate is 60% (3/5). Note
that these images are taken for demonstration purpose only and corresponding labels are not their original given labels.
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Figure 2. SSL-Training of network-‘k’ (k=1,2). After separating the samples, we create total 8 sets of weak and strong augmented data.
While weakly augmented data helps with target label generation, strongly augmented data are used for updating the parameters through
backpropagation. There are two types of label generation here: pseudo label guessing (4) (represented by green color) and label-refinement
(2) (represented by red color). We have semi-supervised (eq. 11) and contrastive (eq. 13) losses that are minimized during training. Note
that for pseudo-label guessing we take the average of both network-(1,2) predictions which is not shown here (eq. 4).

MixUp [21] proposed a strategy for generating convex com-
bination of two inputs: in this case, samples from labeled
and unlabeled sets and their corresponding ground-truth la-
bels and pseudo-labels.

2.1. Loss Functions

After applying MixMatch, the semi-supervised losses
are calculated as follows [2],

LX =
1

|X̂ |

∑
x,p∈X̂

H(p,h(f(y | x; θ);ϕ)), (8)

LU =
1

|Û |

∑
u,q∈Û

∥q− h(f(y | u; θ);ϕ)∥22, (9)

where H(p,q) is the cross-entropy between distributions p
and q with y as the given label.

Additionally, to prevent single-class assignment of all
samples, we use a regularization term based on a prior

uniform distribution (πc = 1/C) to regularize the net-
work’s output across all samples in the mini-batch similar
to Tanaka et al. [13] ,

Lreg =
∑
c

πclog
( πc

1
|X̂+Û|

∑
x∈|X̂+Û| h(f(x; θ);ϕ)

)
(10)

This gives us our semi-supervised loss function as shown in
Figure 2,

Lsemi = LX + λULU + λrLreg. (11)

Here, λU and λr are unsupervised loss coefficient and reg-
ularization coefficient, respectively.

We consider another loss function, contrastive loss,
which is used only for the data points in Dnoisy . Let the pro-
jection head output corresponding to ûstrong

i,1 and ûstrong
i,2 be

zi and zj , respectively. The contrastive loss function [3, 6]



Dataset CIFAR10 CIFAR100

Noise Rate 50% 80% 50% 80%

Method Best Last Best Last Best Last Best Last

UNICON w/o LU 94.89 94.70 87.82 87.10 74.99 74.73 56.94 56.04
UNICON w/o Lreg 95.38 95.11 93.59 93.26 76.48 75.87 61.75 60.90

UNICON 95.61 95.24 93.97 93.97 77.63 76.91 63.98 63.13

Table 1. Contribution of different loss functions on the performance of UNICON. While removing each loss term decreases the test
accuracy, LU plays the most important role in obtaining SOTA performance. Test accuracies from the last epoch are also shown.
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(a) Symmetric 50%
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(b) Symmetric 80%
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(c) Symmetric 90%
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(d) Asymmetric 40%

Figure 3. T-SNE visualizations of network features of test images. The graphs show class distribution after training the network for 300
epochs on CIAFAR10 dataset with different noise types: (a) 50% symmetric, (b) 80% symmetric, (c) 90% symmetric, (d) 40% asymmetric.
Even under extreme label-noise, UNICON effectively learns the true class distributions.

can be defined as

ℓi,j = − log
exp(sim(zi, zj)/κ)∑2B

b=1 1b ̸=i exp(sim(zi, zb)/κ)
, (12)

LC =
1

2B

2B∑
b=1

[ℓ2b−1,2b + ℓ2b,2b−1], (13)

where 1b̸=i is an indicator function that gives a 1 iff b ̸= i,
κ is a temperature constant, B is the number of samples in
mini-batch, and sim(zi, zj) can be expressed as the cosine
similarity between zi and zj .

For each mini-batch, there are total 2B augmented sam-
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(a) Class distribution learned by UNICON
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(b) Class distribution learned by DMix [7]

Figure 4. Class distribution learned by (a) the proposed UNICON and (b) DMix [7] on CIFAR10 dataset with 95% symmetric noise.
UNICON shows better class separation even when only 5% samples have correct labels.

Algorithm 1: One epoch of SSL Training

Input: network-1 parameters Θ(1) = (θ(1), ϕ(1), ψ(1)) and network-2 parameters Θ(2) = (θ(2), ϕ(2), ψ(2)), training set D = (X ,Y), number
of samples N , number of classes C, sharpening temperature T , unsupervised loss coefficient λU , contrastive loss coefficient λC , and
regularization coefficient λr .

for k = 1 to 2 do
Dclean,Dnoisy ,d = Uniform–Selection

(
D, (θ(1), ϕ(1)), (θ(2), ϕ(2)), N,C

)
(see Alg. 1 of main paper) // Separation of clean

and noisy set

W = Weight–Estimation
(
d
)

(see eq. 3) // Weights for label-refinement
for iter = 1 to num iters do

From (Dclean,W), draw a mini-batch {(xb,yb, wb); b ∈ (1, ..., B)} // Draw labeled data for SSL
From Dnoisy , draw a mini-batch {ub; b ∈ (1, ..., B)} // Draw unlabeled data for SSL
for b = 1 to B do

for m = 1 to 2 do
x̂weak
b,m = Weak–Augment(xb) // First weakly-augmented copy

ûweak
b,m = Weak–Augment(ub) // Second weakly-augmented copy

x̂strong
b,m = Strong–Augment(xb) // First strongly-augmented copy

ûstrong
b,m = Strong–Augment(ub) // Second-strongly augmented copy

Get pb using Eq. 1 // Model Prediction
ȳb = wbyb + (1− wb)pb // Label-refinement
ŷb = Sharpen(ȳb, T ) // Temperature sharpening
Get q̄b using Eq. 4 // Pseudo-label
qb = Sharpen(q̄b, T ) // Temperature sharpening

X̂ = {(x̂strong
b,m , ŷb); b ∈ (1, ..., B)} // labeled Set

Û = {(ûstrong
b,m ,qb); b ∈ (1, ..., B)} // Unlabeled Set

LX ,LU = MixMatch(X̂ , Û) // Apply MixMatch
Calculate LC using eq. 13 // Contrastive Loss
Ltot = LX + λULU + λCLC + λrLreg // Total loss

Θ(k) = SGD(L,Θ(k)) // Update the Parameters

Return: Updated Θ(1), Θ(2).

ples, since we are creating a pair of augmented samples out
of a single sample. Let us consider i and j as a positive pair,
then the rest of the data points (2B− 2) are treated as nega-
tive examples. We can compute the final contrastive loss LC

across all the positive pairs, both (i, j) and (j, i) in a single
mini-batch. The formulation of ℓi,j does not require any la-
bels (ground-truth or pseudo-labels). Since contrastive loss
does not require labels, it mitigates the negative impact of



Loss Coef. CIFAR10 CIFAR100
λU λC Best Last Best Last

20 0.025 95.38 94.80 77.12 76.89
30 0.025 95.61 95.24 77.63 76.91
40 0.025 95.42 95.26 77.34 77.18
20 0.050 95.49 94.83 77.46 76.95
30 0.050 95.17 94.56 77.28 76.12
40 0.050 95.35 94.79 77.15 76.44

Table 2. Performance analysis of UNICON with different loss co-
efficients (50% symmetric noise). We observe that our proposed
method is stable over different values of λU and λC .
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Figure 5. Training accuracy at different epochs. Low accuracy in-
dicates that the networks do not memorize the noisy labels even
after long training. Usually, standard cross-entropy based training
leads to a high training accuracy (∼100%), i.e., complete mem-
orization of noisy labels. However, our proposed joint selection
and SSL scheme is shown to be effective in preventing such mem-
orization.

noisy label memorization.
Finally, we accumulate all losses to get the total loss,

Ltot = Lsemi + λCLC , (14)

where λC is the contrastive loss coeffiecient. The summary
of these steps is provided in Algorithm. 1.

3. Ablation Studies
In this section, we analyze the performance of UNICON

under different scenarios.

3.1. Impact of Different Losses

We observe the contribution of each loss function on the
performance of UNICON. It can be observed from Table
1 that each loss term helps in improving the performance
while LU has the highest impact on performance. Train-
ing without LU indicates that we discard the selected noisy
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Figure 6. Our designed filtering rate R adjusts itself based on the
network predictions without manual tuning at each training iter-
ation [18]. As training progresses and the model gets confident
about most of its predictions, UNICON selects more clean sam-
ples with better precision. For this graph we used CIFAR10 dataset
with 50% symmetric noise.

samples completely. The drop in accuracy shows the signif-
icance of pseudo-label based feature learning. Improving
the quality of these pseudo-labels is one of the primary con-
tributions of UNICON.

3.2. Loss Coefficients

In Table 2, we show the effect of different loss coeffi-
cients. We observe that the performance of UNICON is rel-
atively stable over a large range of coefficient values. We
select a value of 30 and 0.025 for λU and λC respectively
since this set of values result in optimal performance on
both CIFAR10 and CIFAR100 datasets. We apply the same
loss coefficient value for all datasets irrespective of the class
number, number of samples, noise type, noise rate etc.

3.3. T-SNE Visualization

A t-SNE visualization [14] for features of test images is
presented in Figure 3. The features are obtained from mod-
els trained under different label noise settings. We observe
that class separation gets better as the noise level decreases.
We further notice that UNICON obtains the best separation
of test images at symmetric 50% noise. However, when the
noise rate increases it becomes more challenging to learn
the class distribution as shown in Figure. 3b and 3c. In
addition, we compare the performance of our method with
DMix [7] in the presence of 95% label noise in Figure 4. It
is a difficult task to separate clean samples from noisy sam-
ples under such high noise rate. Interestingly, we observe
that our simple approach effectively learns better class dis-
tribution in comparison to DMix [7]. We attribute this to the
high precision of our uniform clean sample selection strat-
egy.



Hyper Parameters CIFAR10/100 Tiny-ImageNet200 Clothing1M WebVision

Optimizer SGD SGD SGD SGD

Initial Learning Rate 0.02 0.01 0.002 0.01
Momentum 0.9 0.9 0.9 0.9
Weight Decay 5e−4 5e−4 1e−3 1e−3

Mini-batch Size 64 32 32 32
Total Epochs 300/350 350 8 100
T 0.5 0.5 0.5 0.5
λC 0.025 0.025 0.025 0.025
λU 30 30 30 30
λr 1 1 1 1
κ 0.05 0.05 0.05 0.05
dω 0.5 0.5 0.5 0.5
MixUp, α 4 2 0.5 0.5

Table 3. Hyperparameter Settings for UNICON. Most of the parameters are the same across different datasets. This shows the general
applicability of the proposed UNICON method.

3.4. Memorization of Noisy Labels

In case of standard training, the network memorizes the
noisy labels leading to poor generalization performance.
However, our proposed method UNICON demonstrates re-
sistance to memorization of label noise. We show this phe-
nomena in Figure 5. We observe that with standard training
the accuracy improves consistently over different epochs
suggesting the memorization of label noise. In sharp con-
trast to this, the training accuracy of UNICON saturates very
quickly indicating that the network is resisting the memo-
rization of noisy labels at later stage of training. For in-
stance, an ideal scenario for 80% symmetric noise would
be if the training accuracy is ∼20%, i.e. the percentage of
clean samples. Furthermore, we notice that our training ac-
curacy deteriorates as we increase the rate of label noise in
the training data. This further validates our claim that UNI-
CON is effective in combating the memorization of label
noise.

3.5. Filter Rate

In Figure 6, we show that the filter rate steadily increases
as the network generates more confident predictions (shown
for 50% noise rate). At each epoch of training, the filter rate,
R is selected based on network predictions. This design de-
cision omits the requirement of manually tuning the selec-
tion parameter (filter rate) at each training epoch [18]. For
our experiments, we set dµ, and τ to 0.7, and 5 respectively.

4. Baseline Methods

For CIFAR10 and CIFAR100, we compare UniCon with
the following state-of-the art methods: LDMI [17], M-Up
[21], PCIL [19], ELR [8], DMix [7], MOIT [11]. Methods

like ELR [8] focus on the importance of the early learn-
ing regularization in preventing the memorization; MOIT
[11] porposes a multi-objective framework to deal with the
noisy labels. For Clothing1M, we consider Joint-Optim
[13], MetaCleaner [22] along with ELR [8] and DMix [7]
. Furthermore, D2L [9], MentrorNet [5] Co-Teaching [4],
Iterative-CV [15] are among the methods we consider for
WebVision. For TinyImageNet, we compare our method
with Decoupling [10], MentorNet [5], Co-teaching+ [20],
M-correction [1], NCT [12] etc.

5. Training Details

5.1. Hyper-parameter Settings

We describe the hyperparameter settings in Table 3. Note
that most of these hyperparameters are the same across all
datasets.

5.2. WebVision and Clothing1M

For Clothing1M dataset, first, we resize the image to
256 × 256 and then apply random crop to those images to
obtain a 224 × 224 image. On the other hand, each image
of WebVision is resized to 320 × 320 and a random crop
of size 299 × 299 is applied. For WebVision, we consider
only 50 classes for training and validation. Similarly, only
50 classes are considered for ILSVRC12 validation set. The
percentage of noisy labels in WebVision are estimated to be
around 20%. It has been shown that our method obtains
slightly lower Top-1 accuracy than state-of-the-art. In some
scenarios (low noise level), the experimental results indicate
that UNICON underperforms compared to the state-of-the-
art. Relatively low performance on WebVision dataset can
be attributed to the presence of low label noise.
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