
Mask Transfiner for High-Quality Instance Segmentation
(Supplemental material)

Lei Ke1,2 Martin Danelljan1 Xia Li1 Yu-Wing Tai3 Chi-Keung Tang2 Fisher Yu1

1ETH Zürich 2HKUST 3Kuaishou Technology

We first provide more implementation and training/inference details of Mask Transfiner on three instance segmentation
benchmarks (Section 1). Then we conduct more experimental analysis and discussion of comparison between Mask Trans-
finer and other methods (Section 2). We further present more qualitative results comparisons on COCO [12], BDD100K [15]
and Cityscapes [5] datasets in various scenes (Section 3). Finally, we visualize quadtree attention weights, detected incoherent
regions and segmentation results with various quadtree depths (Section 4), including failure cases analysis.

1. More Implementation Details
Implementation and Training/Inference Details We implement Mask Transfiner based on Detectron2 [14], where SGD
is used with 0.9 momentum and 1K constant warm-up iterations. The weight decay is set to 0.0001. On the two-stage and
query-based frameworks, we employ Mask Transfiner using Faster R-CNN [13] and DETR [2] detectors respectively while
leaving the RoI pyramid construction and refinement transformer unchanged.

To make the detection on incoherent regions more robust, we adopt jittering operations along the boundaries of the ground
truth incoherent regions because in our case, the recall rate of the detection to cover all the incoherent regions play a more
critical role in influencing final performance. We use 0.5 as the threshold for the binary incoherence classifier. For the
experiment of Table 2 in the paper, the boundary regions are pixels within two-pixel Euclidean distance to the detected object
mask contours on all three levels of the object feature pyramid, where the object boundary detector [10] is used. The coarse
mask head is composed of a FCN network with four 3×3 Convs attached on the ROI feature of size 28×28.

During training, we randomly permute the order of the incoherent points for each object and select 300 of them (100 per
quadtree level), so as to maintain the same sequence length for each object for batch efficiency. We adopt the horizontal
flipping and scale data augmentation during training following [11].

During inference, no test-time augmentation is used. We employ a hierarchical propagation scheme based on the quadtree
structure from coarse to finer scales (detailed in Section 3.1 of the paper) and the refined incoherent nodes predictions. In
Figure 1, we further illustrate the mask propagation process with a simplified 3-level quadtree. The incoherent nodes number
N with their refined predictions value Vn are formatted in N : Vn, where {1 : v1, 2 : v2, 5 : v5, 7 : v7, 8 : v8, 10 : v10, 13 :
v13} are incoherent nodes numbers and prediction values pairs in our given example. We break down the mask correction
and propagation into 3 steps corresponding to 3 levels of the quadtree with visualizations. Comparing to only correcting the
labels of finest leaf nodes on the quadtree, it enlarges the refinement areas with negligible cost by propagating refinement
labeled to leaf nodes {3, 4, 6, 9, 11, 12}. We validate the effect of quadtree mask propagation in Table 8 of the paper.
COCO: We set 16 images per mini-batch. Following [11], our training schedule is 60k / 20k / 10k with updating learning
rates 0.02 / 0.002 / 0.0002 respectively. For ablation study, our method is trained on four GPUs using ResNet-50, where we
use SGD for optimization and set initial learning rate to 0.01 with total batch size 8. We train Mask Transfiner for 12 epochs
(taking about 8 hours with NVIDIA RTX 2080 Ti), and decrease the learning rate by 0.1 after 8 and 11 epochs.
Cityscapes: We adopt 8 images per mini-batch and the training schedule is 18k / 6k updates at learning rates of 0.01 / 0.001
respectively. During training, the images are resized randomly to a shorter edge from [800, 1024] pixels with a step of 32
pixels. The inference images are resized to a shorter edge size of 1024 pixels. For Cityscapes evaluation, we train the models
on the fine annotations of the train set with 64 epochs following [4, 11].
BDD100K: We use 16 images per mini-batch and and the training schedule is 22k / 4k/ 4k updates at learning rates of 0.02
/ 0.002/ 0.0002 respectively. During training, the images are resized randomly to a shorter edge from [600, 720] pixels with
a step of 24 pixels. During inference, the images are resized to a shorter edge size of 720 pixels. Note all compared methods
are trained with the same schedules and image size settings.

1



Simplified 3-Level Quadtree
(Incoherenet nodes are marked in Yellow)

L1

L2

L3

Labels Correction on L1 and Mask Propagation

1

2 53 4

6 7 8 9 10 11 12 13

1:v1

2:v1 5:v13:v1 4:v1

6 7 8 9 10 11 12 13

Labels Correction on L2 and Mask Propagation

1:v1

2:v2 5:v53:v1 4:v1

6:v2 7:v2 8:v2 9:v2 10:v5 11:v5 12:v5 13:v5

L1

L2

L3

Labels Correction on L3 and Mask Propagation

1:v1

2:v2 5:v53:v1 4:v1

6:v2 7:v7 8:v8 9:v2 10:v10 11:v5 12:v5 13:v13

1

32

Figure 1. The simplified illustration of mask propagation on a 3-level quadtree during inference. Given the detected incoherent nodes and
their refined predictions, in Step 1, Mask Transfiner corrects the nodes labels belonging to L1 level of the quadtree, and then propagates
these corrected labels to their corresponding four quadrants in L2 level. In Step 2, the process of labels correction is efficiently conducted
on the incoherent nodes in L2 and further propagating to L3. This process is recursive until reaching the finest quadtree level.

2. More Experimental Analysis
Accuracy Comparison In Table 9 of the main text, we compare the accuracy of Mask Transfiner with previous methods
and find that Mask Transfiner achieves consistently large improvements on different backbones and object detectors. We
further observe that the usage of DCN [16] with Mask Transfiner can bring a surge in performance. We compare Transfiner
with Mask Scoring R-CNN [9] trained with DCN under the same setting and training schedules. Using ResNet-101 and
Faster R-CNN [13] detector, the mask AP of Mask Transfiner on COCO test-dev is 42.2, while Mask Scoring R-CNN is
39.6 in Table 9 of the paper. For more comprehensive comparisons on two-stage instance segmentation methods, in Table 1,
we also train Mask R-CNN [7], PointRend [11], BCNet [10], Cascade Mask R-CNN [1] and HTC [3] with the multi-scale
3× training schedule with DCN, and submit their predictions to the evaluation server for obtaining their accuracies on the
test-dev split. The performance advantages of Mask Transfiner are consistently significant, improving the baseline Mask
R-CNN† for 2.8 mask AP and outperforming PointRend by 0.9 AP.
Table 1. Performance comparison between two-stage instance segmentation methods on COCO test-dev set using R101-FPN. The dagger
† denotes training with DCN [16] and 3× training schedule in our implementation. HTC and Cascade Mask R-CNN use 3-stage cascade
refinement with multiple object detectors and mask heads. The standard transformer with output size 112×112 runs out of memory in our
experiments.

Method Output Size AP APS APM APL FPS

Mask R-CNN† [7] (Baseline) [7] 28×28 39.4 18.6 42.8 54.5 9.6
Mask Scoring R-CNN† [9] 28×28 39.6 18.9 42.7 55.1 9.2
BCNet† [10] 28×28 41.2 23.6 43.9 52.8 8.9
PointRend† [11] 224×224 41.3 20.6 44.0 55.3 7.2
Cascade Mask R-CNN† [1] 28×28 41.5 22.1 42.6 54.2 4.8
HTC† [3] 28×28 41.7 23.3 44.2 53.8 2.1

Standard Transformer† 56×56 41.3 23.4 43.5 53.2 1.4
Mask Transfiner† (Ours: Quadtree Transformer) 112×112 42.2 24.1 44.8 55.4 6.1

Inference Speed We adopt frames per second (FPS) to evaluate the inference speed of the models. In Table 1, we bench-
mark all the compared two-stage methods using a Titan RTX GPU. The reported FPS is the average obtained in five runs,
where each run measures the FPS of a model through 200 iterations. Compared to the Cascade Mask R-CNN and HTC with
three-stage cascade refinement and multiple object detectors/mask heads (output size 28×28), our Transfiner using 3-level



Mask R-CNN SOLQ Mask Transfiner (Ours)PointRend
Figure 2. Instance Segmentation on COCO [12] validation set by a) Mask R-CNN [7], b) SOLQ [6], c) PointRend [11], d) Mask Transfiner
(Ours) using R50-FPN as backbone, where Mask Transfiner produces significantly more detailed results at high-frequency image regions
by replacing Mask R-CNN’s default mask head. Zoom in for better view.

Baseline

Ours

Baseline

Ours

Figure 3. Qualitative comparisons with baseline method Mask R-CNN [7] and our Mask Transfiner on BDD100K [15] val set. Mask
Transfiner produces more correct and natural segmentation results by revealing details for high-frequency regions.

quadtree is much faster and more accurate with higher-resolution predictions (112×112). Comparing to the baseline Mask
R-CNN, although there is a drop on inference speed for about 35% due to multi-head attention modeling between hierarchi-



cal incoherent regions, the significant performance boost of 2.8 mask AP and 4 times larger output height/width are good
compensation trade-offs. Note that standard transformer (3 layers and 4 attention heads in each layer) operating on uniform
grids with output size 56×56 only runs at 1.4 FPS, which is much slower than our method.

BMask R-CNN Mask R-CNN + PointRend Mask R-CNN + Mask Transfiner (Ours)Mask R-CNN

Figure 4. Qualitative comparisons with instance segmentation methods Mask R-CNN [7], BMask R-CNN [4], PointRend [11] and our
Mask Transfiner on Cityscapes [5] val set. Mask Transfiner produces more precise and natural segmentation results, where even the small
triangle-shaped traffic sign occluding the bus (3rd row) and the gap between the hand and leg (5th row) could be correctly separated. Zoom
in for better view.

3. More Qualitative Comparisons
We provide more qualitative results comparisons on three evaluation benchmarks COCO (Figure 2), B100K (Figure 3) and

Cityscapes (Figure 4), where our Mask Transfiner consistently produces masks with substantially higher precision and quality
than previous methods [4,6,7,11]. Take the third case in Figure 2 as an example, SOLQ and the baseline Mask R-CNN only
provides very coarse mask predictions in the high-frequency regions, such as the giraffe’s head and feet regions, due to the
low-resolution output size 28×28. Although PointRend uses large output size 224×224, it still fails to delineate the thin gap
between the left legs of giraffe. These segmentation errors on ambiguous regions reveals the limitation of segmenting each
pixel separately only by a share MLP [11] without global reasoning and pixel-wise relations modeling.



Quadtree Depth 1 
(28 × 28)

Quadtree Depth 2 
(56 × 56)

Increasing Quadtree Refinement Depth

Coarse Mask 
(28 × 28)

Quadtree Depth 3
(112 × 112)

Figure 5. Qualitative results comparison between the coarse mask predictions by our baseline [8] and the refinement results of Mask
Transfiner on COCO with various depths of the quadtree built on detected incoherent regions.

4. Visual Analysis
Visualization Multi-level Refinement In Figure 5, we analyze how the mask predictions evolve with increasing quadtree
depths. The predicted masks become substantially finer in detail around object boundaries, which reveals that the quadtree
nodes with more levels at larger output sizes for an object preserves more low-level details for fine-grained segmentation.

Failure Cases We also analyze the failure cases and find one typical failure mode shown in the last row of Figure 5, where
a small portion of the bird’s paw is wrongly predicted as background wood due to their highly similar appearance and texture.

Visualization on Quadtree Attention and Incoherent Regions In Figure 6 and Figure 7, we further provide more quadtree
attention visualization examples and their detected incoherent regions on RoI pyramid, where the outline of objects can be
observed and the sparsity of quadtree attention is clearly shown. The quadtree nodes with higher appearance or positional
similarity has larger attention weights attending between them.



Mask Prediction Quadtree Attention 
for Node R1

Quadtree Attention 
for Node R2

Quadtree Attention 
for Node R3

Quadtree Attention 
for Node R4

R1

R1

R2

R2

R3

R3
R4

R4

R1

R2 R3

R4

Figure 6. Visualization on the quadtree attention weights distribution in the sparse incoherent regions for four sampled red nodes.

Input Image Incoherent Regions on Level 1 Incoherent Regions on Level 2 Incoherent Regions on Level 3

Figure 7. Visualization of detected incoherent regions on different levels of the constructed quadtree based on the RoI pyramid, where the
incoherent nodes regions in deeper quadtree levels with larger resolution size are distributed more sparsely.



References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and instance segmentation. 2019. 2
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object

detection with transformers. In ECCV, 2020. 1
[3] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang,

et al. Hybrid task cascade for instance segmentation. In CVPR, 2019. 2
[4] Tianheng Cheng, Xinggang Wang, Lichao Huang, and Wenyu Liu. Boundary-preserving mask r-cnn. In ECCV, 2020. 1, 4
[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,

and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016. 1, 4
[6] Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Solq: Segmenting objects by learning queries. In NeurIPS,

2021. 3, 4
[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017. 2, 3, 4
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016. 5
[9] Zhaojin Huang, Lichao Huang, Yongchao Gong, Chang Huang, and Xinggang Wang. Mask scoring r-cnn. In CVPR, 2019. 2

[10] Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Deep occlusion-aware instance segmentation with overlapping bilayers. In CVPR, 2021.
1, 2

[11] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend: Image segmentation as rendering. In CVPR, 2020. 1, 2,
3, 4

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco: Common objects in context. In ECCV, 2014. 1, 3

[13] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal
networks. In NeurIPS, 2015. 1, 2

[14] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019. 1

[15] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell. Bdd100k:
A diverse driving dataset for heterogeneous multitask learning. In CVPR, 2020. 1, 3

[16] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable, better results. In CVPR, 2019. 2

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	. More Implementation Details
	. More Experimental Analysis
	. More Qualitative Comparisons
	. Visual Analysis

