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Introduction
In this supplementary material, we provide further de-

tails of our method and elaborate on the results presented in
the main paper. Specifically:

In Sec. 1 we detail how we train a 2D landmark predictor
from DXA silhouettes and quantitatively evaluate the accu-
racy of the 2D predicted landmarks on the synthetic data.
This section extends Sec. 3.2 of the main document.

In Sec. 2, we provide further details about the skin and
skeleton registrations to the DXA images. This section pro-
vides further details of Sec.s 3 and 4 of the main paper.

In Sec. 3 we present an evaluation of the skeleton shape
space obtained in Sec. 4.1 of the main paper.

In Sec. 4 we provide quantitative and qualitative results
to complement the Sec. 5 from the main document.

In Tab. 1 we summarize the notation used in the paper
for an easy reference.

1. Predicting 2D landmarks on DXA scans
In order to register the skin and skeleton models to the

DXA scans, we need 2D landmarks on the scans. In this
section we explain how we generate the synthetic dataset
(Sec. 1.1, Sec. 1.2) to train a 2D landmark predictor from
DXA skeleton silhouettes (Sec. 1.3) and evaluate the pre-
diction (Sec. 1.4). The 2D landmark prediction from DXA
silhouette is illustrated in Fig. 1.

1.1. Initial model creation

To generate synthetic skeleton silhouettes that look sim-
ilar to real DXA bone masks MB , we create an articulated
skeleton model K, rigged with the STAR body model [3]
parameters.

We first generate 21 STAR bodies by sampling the STAR
shape space BS . We consider the mean body, and then, for
the nβ = 10 first components of the STAR shape space,

Figure 1. From a skeleton mask, a stacked hourglass network pre-
dicts the 2D locations of the landmarks L̃I .

we sample two new body shapes with the shape parameters
β = {−2, 2}. Using Anatomy Transfer (AT) [1], we regis-
ter a template skeleton mesh to each of these body shapes.
Effectively we enforce the skin of the AT mesh to match the
STAR mesh.

With the obtained registrations, we define the mean
skeleton shape K(β = 0, θ = 0), as the obtained AT skele-
ton on STAR’s mean shape. Then, for each shape space
component, we compute the skeleton offsets to the mean
skeleton and use these offsets to define an initial skeleton
shape space. From these, we compute the shape vectors of
K as Bi = Tβi=2 −Tβi=−2 for i in [0, nβ ], else Bi = 0 .

To pose the skeleton, we rig it with the same kinematic
tree as STAR. For each skeleton bone we manually define
to which body part it belongs. This is straightforward as
the initial template skeleton has the individual bones identi-
fied. It is important to note that the created skeleton model
K(β, θ) can change its shape and pose using the same shape



Table of notation in OSSO

IS ≜ Dxa soft tissue image (skin)
IB ≜ Dxa bone image (skeleton)
MS ≜ Skin mask segmented from IS
MB ≜ Skeleton mask segmented from IB

ST (βS ,θS) ≜ STAR body model [3]
BS ≜ STAR shape space

K(βS ,θS) ≜ The initial skeleton model rigged to
the STAR shape and pose parame-
ters

SP (t, r,βB) ≜ Our skeleton stitched puppet model
M̂B ≜ Synthetic skeleton mask generated

with K

LI ≜ 29 3D landmarks whose 24 firsts
correspond to STAR joints location
and the closest skeleton vertices in
K

L̃I ≜ 2D landmarks predicted from MB .
RS ≜ STAR body model registered to MS

RB ≜ Our skeleton stitched puppet model
registered to MS

TB ≜ RB unposed in T pose
LB ≜ 63 3D landmarks defined as vertices

on the skeleton mesh template
RB ≜ Regressor to predict skeleton land-

marks LB from a STAR body
model registration RS

L̃B ≜ LB landmarks location inferred
with the regressor RB

BB ≜ PCA model of the skeleton learned
from TB

BS ≜ STAR PCA shape space
Rβ ≜ Regressor to predict skeleton shape

components βB ∈ BB from STAR
shape components βS ∈ BS

SIAT ≜ Skeleton mesh inferred with AT
SIOSSO ≜ Skeleton mesh inferred with OSSO

Table 1. Table of Notation

and pose parameters as STAR.
This initial model has an obvious drawback: the kine-

matic joint locations are not consistent with the anatomic
skeleton articulations. Still, it is sufficient to easily gener-
ate plausible synthetic bone masks and the corresponding
landmark annotations.

We define 29 landmarks on the skeleton mesh (Fig. 2).
The first 24 correspond to the closest vertex to the STAR
joint locations. Additionally we select the tip of the head,
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Figure 2. Position of the 3D landmarks LI on the Stitched Puppet
skeleton model PB . These markers correspond to the location of
the STAR 3D joints plus 5 additional landmarks.

fingers and feet. We denote these initial landmarks LI or
LI(M) if we make explicit the mesh M on which the land-
marks are defined.

1.2. Generating synthetic DXA masks

We use the skeleton model K to generate synthetic skele-
ton binary masks M̂B with their corresponding 2D land-
marks, that we denote L̃I to explicitly distinguish them
from the 3D landmarks LI .

We generate synthetic skeleton shapes by uniformly
sampling the STAR shape space β in the range
[−2.5, 2.5]10. As the poses in DXA scans are relatively con-
strained, i.e. lying down with arms at the side, we manually
define a lying pose θL and sample new angles from a uni-
form distribution centered at θL within a small range.

With the sampled shape and pose parameters, we render
the silhouette of the skeleton and the corresponding land-
mark image. The virtual camera is orthographic to match
the DXA scanner camera, and the field of view is set de-
pending on the sample body height to leave a specific mar-
gin on the top and bottom of the image. This margin is sam-
pled to match the margin distribution observed on the DXA
dataset. A sample of the generated paired data is presented
in Fig. 3.

To bridge the domain gap between the synthetic silhou-
ettes and the DXA ones, we augment the data by erod-
ing, and partially masking the rendered skeleton silhouettes,
while keeping the landmarks fixed.



Figure 3. Pairs of synthetic skeleton masks (in white) and 2D land-
marks L̃I (color-coded) overlayed on the mask (in gray).

Figure 4. Pairs of input and predicted 2D landmarks L̃I on real
DXAs. The network learned on synthetic data generalizes well to
real data.

1.3. Training a 2D landmarks predictor

From the synthetic silhouettes of the skeleton M̂B , we
train the landmark detector using a stacked hourglass net-
work [2] with 8 stacks. The network takes a 256x256 binary
silhouette as input and outputs a 29x64x64 tensor, where
each channel contains the position for one of the 29 land-
marks L̃I .

In Fig. 4, we show qualitative results of the predicted
landmarks on binary masks from real DXA images. We
visually inspected the predicted 2D landmarks and observe
that the silhouette simplification strategy combined with our
data augmentation technique allows to obtain very good
qualitative results on real DXA images.

1.4. 2D landmarks prediction evaluation

As the original DXA images do not have annotations,
we only evaluate quantitatively on the synthetic dataset. We
evaluate the landmarks predicted by the stacked hourglass
network on 100 unseen synthetic skeleton silhouettes. The
prediction error is measured in pixels on an image of size
256x256 pixels. The per landmark errors are reported in
Table 2.

Most errors are on the order of one pixel. The highest
prediction errors are for the tip of the middle fingers (L25
and L26) and the toes (L27 and L28). We observe that due

err. (mean ± std)
L0 0.73 ± 0.35
L1 0.95 ± 0.40
L2 0.81 ± 0.38
L3 0.90 ± 0.46
L4 1.14 ± 0.54
L5 1.12 ± 0.60
L6 0.78 ± 0.46
L7 1.16 ± 0.63
L8 1.24 ± 0.68
L9 1.07 ± 0.37

L10 1.18 ± 0.52
L11 1.18 ± 0.62
L12 0.87 ± 0.41
L13 0.87 ± 0.41
L14 1.01 ± 0.43

err. (mean ± std)
L15 0.78 ± 0.37
L16 1.01 ± 0.47
L17 0.87 ± 0.50
L18 1.22 ± 0.62
L19 1.01 ± 0.54
L20 1.22 ± 0.69
L21 1.21 ± 0.56
L22 1.08 ± 0.75
L23 1.04 ± 0.69
L24 0.75 ± 0.43
L25 1.87 ± 1.39
L26 1.53 ± 1.02
L27 1.23 ± 0.61
L28 1.23 ± 0.67

Table 2. Prediction error in pixels of the predicted 2D landmark L̃I

on synthetic skeleton silhouettes. Landmark numbers are visually
shown on the mesh in Fig. 2.

to the resizing of the skeleton mask from the original image
size (approx 800x800) to the size of the network (256x256),
fine structures such as fingers and toes are degraded or lost.
This is numerically visible with the standard deviations of
the finger markers which are over 1 pixel.

2. Skin and skeleton registrations to DXA
This section provides further details to complement the

sections 3.3, 3.4 and 3.5 of the main paper.

2.1. Skeleton model based on Stitched Puppet

We create a parametric skeleton model to align to the
DXA skeleton silhouettes based on the stitched puppet [6].

The stitched puppet model, as the name implies, repre-
sents an articulated deformable structure, the human body,
as a collection of parts that are stitched together at the part
interfaces. The model has per-part shape spaces and a pose
parametrization in terms of location of each part center and
its global rotation. The stitched puppet can be seen as a
graphical model, where part parameters are defined at each
node, and edge potentials represent stitching costs, that fa-
vor the parts to be connected and have smooth skin connec-
tions. The original model [6] is fit to 3D scans of people
with non-parametric particle belief propagation. In order to
define a stitched puppet model given an existing mesh, one
needs to define a segmentation of the faces into parts, du-
plicate the vertices that belong to different adjacent parts,
and define stitching potentials that act as springs between
the corresponding duplicated vertices.

In our skeleton model, we manually define 21 groups
of bones that belong to the same anatomic part, and define



the interfaces between these parts. In Fig. 5 we show the
different parts with color codes, their interfaces, as well as
the 3D landmarks LB defined on the bones.

2.2. Registration costs

In this section, we detail the costs used for the skeleton
registration (Sec 3.5 of the main paper) and the final repos-
ing (Sec 4.3 of the main paper). In this section, we denote
the vertices of SP as vsp, the vertices of ST as vst and z
the anterior-posterior axis. vz denotes the z component of
vertex v and vn the mesh normal at this vertex.

Skeleton to DXA registration. In Sec. 3.5 of the main
paper, we introduce the cost Ei to constrain the skeleton
inside the body. We decompose Ei as Ei = Ein+Ep+Ect

and illustrate the intuition of each cost in Fig. 6.
The energy term Ein forces the skeleton to be inside the

body along the front-back axis.

Ein = max(0, Dz(SP (βB , t, r),RS)) (1)

where Dz is the distance along z between a SP vertex
and the closest skin vertex.

The term Ep forces vertices of the skeleton to be close
to specific areas of the skin along the front-back axis. For
several manually defined pairs of skeleton vertices and skin
area A, we define

Ep = vzsp −
∑

vst∈A

(vzst). (2)

The energy Ect forces the contact between some specific
vertices of the skeleton and the skin, like the elbow or the
finger tips.

We define pairs of skin and skeleton vertices (vsp, vst)
and want them to be at a fixed small distance e = 5mm.
Effectively, Ect is the per vertex distance:

Ect = vsp − (vst − e · vnst) (3)

Skeleton unposing. In Sec. 3.5 of the main paper, we
introduce Ed, a cost that enforces the conservation of the
skeleton to skin distance when changing the pose. In Fig. 7
we illustrate the pairs of skin and skeleton vertices that are
used for this cost. Our heuristic is that each of these pairs
has a fixed distance d0 that should be constant independent
of the 3D pose.

Skeleton reposing. In Sec. 4.3 of the main paper, we use
the costs Ej and El in the skeleton inference optimization.

The term Ej models ball joints in the shoulders, elbows
and hips. It forces the bone heads to stay in their sockets.

For each articulation, we define vertices si, sj on the skele-
ton template that define a joint socket of a bone head. At
each optimization step, we fit spheres with centers Si, Sj to
each groups of vertex and force each of spheres to stay at a
similar distance during the optimization:

Ej(t, r;SP 0) = ||Si(t, r)− Sj(t, r)|| − ds0 (4)

This cost is not sufficient to model the knee movement,
so we define stitching costs approximating the human knee
ligaments. We create pairs of vertices (li, lj) at the bone
locations where the ligaments are attached, and define the
per-vertex cost El = ||li − lj || − dl0 .

The distances dl0 and ds0 are defined such that
Ej(t0, r0;SP 0) = 0 and El(t0, r0;SP 0) = 0.

3. Skeleton shape space evaluation
In section 3.6 of the main paper, we detail how we learn

a skeleton shape space from the unposed skeleton meshes.
In this section, we present an evaluation of the compactness
of the shape space as well as its generalization ability.

3.1. Variance

To evaluate the compactness of our skeleton shape space,
we compute the variance explained by each component of
the PCA space. The cumulative variance plot is shown
Fig. 8. With 3, 5 and 10 components, the male PCA
model respectively captures 91.1%, 94.8% and 97.8% of the
skeleton’s variance. The female model respectively 92.7%,
95.6% and 98.1%.

3.2. Shape space generalisation

We next evaluate how the skeleton shape space gener-
alises to unseen subjects. We compute the skeleton shape
space from the training dataset and we evaluate how accu-
rately it can reconstruct 200 left out unposed skeletons. We
project each of the test set meshes onto the first N basis vec-
tors of the shape space and we reconstruct the bones using
only these coefficients.

We then measure how much information is lost in this
projection by computing the per-vertex distance between
the original mesh and the projected and reconstructed mesh.
We aggregate this per-vertex error for each mesh and obtain
the errors reported in Table 3.

As we can see, with a small number of components, such
as 5, mean errors are below 6 mm. When using 10 compo-
nents, the reconstruction mean errors are below 4 mm. The
created bones shape space can capture the shape of left out
subjects with errors below 4 millimeters.

4. Extended results
This section complements the presented results in Sec. 5

of the main document.



Figure 5. Our stitched puppet skeleton model, with the different bone groups (left), the interface point between the groups (center) and the
3D landmarks LB (right).

Figure 6. We illustrate the intuition behind the costs on a profile
view of the tibia in the leg. From the frontal projected silhouette,
there is no constraint for the bone to be inside the body along the
z axis. We use Ein to force it to be inside. Forcing it inside is
not enough as it could squeeze and collapse; thus, we enforce the
bone to be close to the skin surface with Ep. In addition, there
are regions where the bones are not covered by muscle and fat
and should, therefore, lie close to the skin surface. We use Ect to
enforce these manually defined areas of contact.

error (mm) (mean ± std)
Nb components Male Female

3 7.59 ± 4.79 7.79 ± 4.86
5 5.55 ± 3.49 5.14 ± 3.27
10 3.14 ± 2.19 3.02 ± 2.14

Table 3. Skeleton reconstruction error given the number of princi-
pal components used. The errors are in millimeters.

4.1. Skin alignment qualitative evaluation

In this section we illustrate the alignment results of the
STAR model on the DXA images. Those alignments were
obtained with the optimization presented in Sec. 3.3 of the
main paper. These results complement the quantitative eval-

Figure 7. Skin to skeleton pairs used in the cost Ed. We color the
links in each part with a different color for visualization purposes.

uation reported in Sec. 5.1 of the main manuscript, where
the intersection over union coefficient between the DXA
mask MS and the computed skin silhouette is 94% for fe-
males and 95% for males. In Figure 9, we show the qual-
itative results. The color-coded images show that the skin
registrations faithfully capture the DXA skin silhouettes.

As mentioned in the last paragraph of Sec. 3.3, we use
the quality of the fit to detect and remove failure cases from
our datasets, i.e. subjects whose body shape can not be ex-
plained with STAR. In Fig. 10, we show some failure cases
with low intersection over union values. These examples in-
clude subjects with atrophied or swollen limbs, severe sco-



Figure 8. Cumulative variance of the skeleton shape space.

liosis or very low BMI. In practice, we used the alignment
score to remove outliers of the available DXA scans (about
1%) to constitute a curated dataset containing a training set
of 1000 subjects and a test set of 200 subjects for each gen-
der.

4.2. Skeleton 3D landmarks regression evaluation

In Sec. 4.1 of the main paper, we explain how we train a
regressor that, taking as input the vertices of the skin, pre-
dicts the 3D location of the landmarks LB (presented in
Fig. 5 right). This regression is learned in a normalized
lying down pose as illustrated in Fig. 12.

To evaluate the LB regressor accuracy, we learn the re-
gressor from the 1000 train subjects and evaluate on the 200
left out subjects. We compute the 3D distance between the
regressed landmarks position and its ground truth position.
In Sec. 5.2 of the main paper we provide a general evalua-
tion on the accuracy of the regressor as well as a discussion
of the results. The detailed per landmark errors are listed in
Table 4.

Figure 9. Comparison of the aligned STAR models RS with the
target DXA masks MS for subjects sampled from the curated
dataset. On the left we show males and on the right females. The
masks intersection is color-coded as follow: green: RS only, or-
ange: MS only, white: both.



Figure 10. Failure cases. For each subject, we show IS , IB , the
fitted skin mesh RS and the intersection of both masks. The masks
intersection is color-coded as follow: green: RS only, orange: MS

only, white: both. The STAR model can not faithfully capture the
shape of these subjects.

Figure 11. Comparison of the registered skeleton RB with the
target DXA masks MB for subjects sampled from the training
dataset. On the left we show males and on the right females. The
masks difference is color-coded as follow: green: RB only, or-
ange: MB only, white: both.



Figure 12. Given a skin mesh, the landmark regressor lets us com-
pute the landmark 3D locations as a linear combination of the skin
mesh vertices locations.

4.3. Skeleton registration qualitative evaluation

Next we show qualitative results of the skeleton registra-
tions RB in Fig. 11. The subjects are the same as in Fig. 9.
These results complement the Sec. 5.3 of the main docu-
ment, and precisely, the numeric value reported in the first
row of Table 1 in the main document.

4.4. OSSO VS Anatomy Transfer comparison

In Figure 14, we present a qualitative comparison be-
tween our OSSO predictions and the ones from Anatomy
Transfer. This results complement Sec. 5.3 of the main
document.

From the DXA test set, we select 5 subjects spanning the
dataset BMI distribution. From the skin alignment RS , we
infer the skeleton and compare it to the subject’s skeleton
DXA image. We denote SIAT the skeleton inferred with
AT and SIOSSO the skeleton inferred with OSSO. M(SI)
is the mask rendered from the mesh SI .

As can be seen from the images, our predictions do bet-
ter capture the global shape of the skeletons. Particularly,
Anatomy Transfer often estimates the location of the hips
to be too low with respect to the actual hips location. Our
method predicts a skeleton which is visually closer to the
one observed in the DXA images.

4.5. Skeleton inference qualitative evaluation

Lateral view Fig. 15 shows side views of the inference
result in T-pose. While there is no ground truth to evaluate
this pose with, the results are plausible.

Figure 15. Lateral views of skeletons inferred with OSSO.

Inference on subjects from AGORA [4] Fig. 16 shows
the inferred skeletons for subjects with different shapes and
poses.
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female male
err. (mm) (mean ± std)

L0 9.03 ± 5.52 10.28 ± 10.28
L1 14.41 ± 8.79 12.60 ± 12.60
L2 15.74 ± 8.49 13.90 ± 13.90
L3 9.99 ± 4.81 10.69 ± 10.69
L4 4.23 ± 2.00 4.42 ± 4.42
L5 8.38 ± 5.39 9.37 ± 9.37
L6 9.72 ± 5.80 10.81 ± 10.81
L7 14.76 ± 8.36 13.95 ± 13.95
L8 15.93 ± 8.47 14.59 ± 14.59
L9 4.06 ± 1.97 4.57 ± 4.57

L10 10.76 ± 5.14 11.12 ± 11.12
L11 9.46 ± 5.57 9.86 ± 9.86
L12 2.03 ± 1.04 1.96 ± 1.96
L13 2.89 ± 1.73 2.58 ± 2.58
L14 3.34 ± 2.00 3.26 ± 3.26
L15 3.67 ± 2.05 3.49 ± 3.49
L16 2.42 ± 1.35 2.28 ± 2.28
L17 3.33 ± 1.81 3.15 ± 3.15
L18 11.20 ± 5.47 10.90 ± 10.90
L19 9.91 ± 5.01 8.44 ± 8.44
L20 11.50 ± 5.83 13.34 ± 13.34
L21 9.96 ± 4.94 8.53 ± 8.53
L22 6.76 ± 3.16 6.93 ± 6.93
L23 7.17 ± 3.56 7.24 ± 7.24
L24 5.29 ± 2.65 5.87 ± 5.87
L25 5.31 ± 2.69 4.99 ± 4.99
L26 7.74 ± 3.92 7.47 ± 7.47
L27 5.72 ± 3.46 4.57 ± 4.57
L28 5.44 ± 2.68 5.22 ± 5.22
L29 6.66 ± 3.22 6.40 ± 6.40
L30 10.83 ± 5.08 10.85 ± 10.85
L31 8.94 ± 4.84 8.10 ± 8.10

female male
err. (mm) (mean ± std)

L32 10.75 ± 5.10 11.65 ± 11.65
L33 6.88 ± 3.37 6.40 ± 6.40
L34 6.23 ± 2.58 6.42 ± 6.42
L35 8.47 ± 4.79 7.96 ± 7.96
L36 5.28 ± 2.53 5.21 ± 5.21
L37 4.91 ± 2.63 4.24 ± 4.24
L38 7.19 ± 3.00 6.95 ± 6.95
L39 4.92 ± 2.52 4.28 ± 4.28
L40 5.27 ± 2.66 4.47 ± 4.47
L41 6.39 ± 3.76 4.65 ± 4.65
L42 12.68 ± 7.17 10.93 ± 10.93
L43 12.40 ± 7.77 11.08 ± 11.08
L44 11.26 ± 6.14 10.44 ± 10.44
L45 11.96 ± 5.93 9.85 ± 9.85
L46 9.22 ± 4.40 9.37 ± 9.37
L47 10.33 ± 5.51 10.13 ± 10.13
L48 9.37 ± 4.21 9.78 ± 9.78
L49 6.84 ± 3.29 7.69 ± 7.69
L50 8.16 ± 3.93 7.62 ± 7.62
L51 4.57 ± 2.21 4.53 ± 4.53
L52 7.85 ± 3.95 6.68 ± 6.68
L53 5.82 ± 2.89 5.13 ± 5.13
L54 0.95 ± 0.52 0.98 ± 0.98
L55 1.69 ± 0.89 1.90 ± 1.90
L56 1.40 ± 0.74 1.47 ± 1.47
L57 12.81 ± 7.43 11.38 ± 11.38
L58 15.95 ± 9.94 13.96 ± 13.96
L59 12.62 ± 6.91 11.32 ± 11.32
L60 20.13 ± 10.65 17.36 ± 17.36
L61 10.62 ± 4.44 8.80 ± 8.80
L62 20.51 ± 11.31 16.47 ± 16.47

Table 4. Errors on the LB landmarks regression in millimeters. In green the errors below 5 mm, in red the errors over 15 mm. The
landmark numbers are visually shown in Fig. 13.



Figure 13. Landmarks LB on the skeleton mesh with landmark number.



Figure 14. For each subject, we show in the order (1) RS , (2) SIAT superimposed with the ground truth DXA IB , (3) the overlap of
M(SIAT ) and IB , (4) SIOSSO superimposed with the ground truth DXA IB , (5) the difference between M(SIOSSO) and MB , (6) the
ground truth DXA IB



Figure 16. Given SMPL bodies aligned to RenderPeople subjects [4, 5], we use OSSO to infer the underlying skeleton.
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