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Block K S D P C Input

Conv1 1 4 2 1 1 32 PSV
Conv1 2 4 2 1 1 64 Conv1 1
Conv1 3 4 2 1 1 128 Conv1 2
Conv2 1 4 2 1 1 256 Conv1 3
Conv2 2 4 2 1 1 256 Conv2 1
Conv2 3 4 2 1 1 256 Conv2 2
Conv2 4 4 2 1 1 256 Conv2 3
Conv2 5 4 2 1 1 256 Conv2 4

Conv3 1 3 1 1 1 256 Conv2 5↑
Conv3 2 3 1 1 1 256 concat[Conv3 1, Conv2 4]↑
Conv3 3 3 1 1 1 256 concat[Conv3 2, Conv2 3]↑
Conv3 4 3 1 1 1 256 concat[Conv3 3, Conv2 2]↑
Conv4 1 3 1 1 1 128 concat[Conv3 4, Conv2 1]↑
Conv4 2 3 1 1 1 64 concat[Conv4 1, Conv1 3]↑
Conv4 3 3 1 1 1 32 concat[Conv4 2, Conv1 2]↑
Conv4 4 3 1 1 1 P concat[Conv4 3, Conv1 1]↑

Table S1. Architecture of the geometry network Fg for BI pa-
rameterization. K is the kernel size, S – stride, D – dilation, P –
padding, C – the number of output channels for each layer, and
input denotes the input source of each layer. Up-arrow ↑ denotes
the 2x bilinear upscaling operation.

S1. Network architectures

Geometry network Fg . The architecture of our depth esti-
mator resembles the network from SynSin [7]. It takes the
plane sweep volume (PSV) as its input and returns ‘opaci-
ties’ for each of the P regular planes, that are used to con-
struct deformable layers. Each block sequentially applies a
convolution, layer normalization and LeakyReLU to the in-
put tensor. We apply spectral normalization [4] to the con-
volution kernel weights. Other details are given in Tab. S1.

Coloring network Fc. The architecture of the coloring
network is inspired by the one described in StereoMag pa-
per [8]. Each block consists of a convolution, layer normal-
ization, and ReLU unit (except for the final block). Detailed
parameters for RSBg scheme are provided in Tab. S2.

Block K S D P C Input

Conv1 1 3 1 1 1 64 deformed PSV
Conv1 2 3 2 1 1 128 Conv1 1
Conv2 1 3 1 1 1 128 Conv1 2
Conv2 2 3 2 1 1 256 Conv2 1
Conv3 1 3 1 1 1 256 Conv2 2
Conv3 2 3 1 1 1 512 Conv3 1
Conv3 3 3 2 1 1 512 Conv3 2

Conv4 1 3 1 2 2 512 Conv3 3
Conv4 2 3 1 2 2 512 Conv4 1
Conv4 3 3 1 2 2 512 Conv4 2

TransConv5 1 4 2 1 1 256 concat[Conv4 3, Conv3 3]
TransConv5 2 3 1 1 1 256 TransConv5 1
TransConv5 3 3 1 1 1 256 TransConv5 2
TransConv6 1 4 2 1 1 128 concat[TransConv5 3, Conv2 2]
TransConv6 2 3 1 1 1 128 TransConv6 1
TransConv7 1 4 2 1 1 64 concat[TransConv6 2, Conv1 2]
TransConv7 2 3 1 1 1 64 TransConv7 1
Conv7 3 1 1 1 0 4L+ 3 TransConv7 2

Table S2. Architecture of the coloring network Fc for the RSBg
parameterization. K is the kernel size, S – stride, D – dilation, P
– padding, C – the number of output channels for each layer, and
input denotes the input source of each layer.

S2. Additional results

Scaling to hi-res. To investigate the scaling properties of
our StereoLayers model, we additionally compared it with
the baselines on high-resolution versions of datasets, de-
scribed in the main text. Tab. S3 presents the results of the
trained network, applied to higher resolution in a fully con-
volutional manner. It outperforms StereoMag operating in
the same regime by a significant margin. Additionally, we
compare the quality with the original IBRNet. This model
achieves the best PSNR value and simultaneously the worst
LPIPS. This is caused by inconsistency in the generated
frames. Please see examples of such behaviour in the sup-
plementary video.

Besides that, we conducted a user study on 80 scenes
from SWORD (with resolution of 512 × 1024), 60 scenes
from RealEstate10k (576×1024) and 80 scenes (40 unique)
from LLFF data (512 × 512). All scenes and input views
are randomly sampled from the test sets. The results of this
experiment are reported in Tab. S4.
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Figure S1. Performance of our system as a function of the number
of layers. The plot confirms the ability of our approach to represent
complex scenes with just a few layers.

Model PSNR ↑ SSIM ↑ LPIPS ↓ FLIP ↓
IBRNet 27.4 0.67 0.219 0.27
StereoMag (256→512) 23.3 0.65 0.178 0.19
Ours (256→512) 24.2 0.69 0.155 0.19

Table S3. Scaling to higher resolution on SWORD dataset. We ex-
amine our model and StereoMag in a fully-convolutional regime:
both were trained at resolution of 256 × 512 and applied for
512× 1024. As in previous experiments, we used the checkpoint
of IBRNet provided by the authors of the corresponding paper.

Dataset Baseline Our score, % p-value

SWORD StereoMag-32 55.62 < 0.001
IBRNet 75.69 < 0.001

LLFF StereoMag-32 54.42 < 0.001
IBRNet 50.27 < 0.001

RealEstate10k StereoMag-32 63.91 < 0.001
IBRNet 60.74 < 0.001

Table S4. Additional user study on high-resolution images. The
3rd column contains the ratio of users who selected the output
of our model as more realistic under the two-alternative forced
choice.

StereoMag with RSBg scheme. As was shown in the
Tab. 2 of the main text, our model trained with the RBg
texturing scheme (which is the default for StereoMag) per-
forms significantly worse than with RSBg: LPIPS of 0.111
vs 0.096. To demonstrate that the texturing scheme is
not the most crucial part of our pipeline, we retrained
StereoMag-32 model with RSBg scheme. In particular, this
modification did not improve the quality of the baseline on
SWORD: SSIM of 0.77 vs 0.76, LPIPS of 0.107 vs 0.107.
Scene slices. Fig. S2 provides additional examples of the
estimated geometry for different scenes.
Number of layers in BI scheme. For MPI-based ap-

Group size
P/L

Number of
planes P

Number of
layers L LPIPS↓ SSIM↑

4 16 4 0.129 0.67
4 24 6 0.120 0.70
4 32 8 0.119 0.70
4 40 10 0.124 0.70

16 64 4 0.122 0.72
32 64 2 0.121 0.71

15 120 8 0.119 0.70
20 120 6 0.122 0.70
30 120 4 0.120 0.70
60 120 2 0.119 0.70

Table S5. Performance dependence on the number of layers and
the size of the plane group for group compositing (GC) configura-
tion. The quality in terms of SSIM and LPIPS is slightly dependent
on the size of the group and the number of layers for 256 × 256
images.

proaches, the number of planes was shown to be critical for
constructing a plausible representation of the scene [3, 5].
To demonstrate the properties of our deformable layers, we
consider the influence of the number of layers in the esti-
mated geometry on common quality metrics. Fig. S1 shows
that the resulting performance falls as the number of layers
decreases to one, proving that multi-layer structure is cru-
cial. Perhaps surprisingly, the measured quality does not
always grow as this number increases. We suggest that the
model cannot handle the redundant geometry properly. It
is worth noting that the authors of the Worldsheet paper re-
ported a similar effect in the single-image case [2].
Number of layers per group in GC scheme. In addition
to our main bounds interpolation (BI) scheme of depth pa-
rameterization, we study the properties of the group com-
positing (GC) model. Namely, we investigate the perfor-
mance of this system as a function of the number of planes
in plane sweep volume during the geometry estimation step.
As Tab. S5 shows, the resulting quality of the model does
not depend on the size of the group. However, we see that
if both the number of layers and the size of the group are
reduced simultaneously, the quality deteriorates. And with
an increase in the size of the group, there is no increase
in metrics. In general, robustness to these parameters is
provided by two points: the nature of the semitransparent
proxy geometry, in which the alpha channel takes the main
responsibility for the object structure, and the adaptive lay-
ered proxy geometry, which can bend itself under objects to
depend less on the number of planes.

S3. Failure cases
To demonstrate the limitations of our approach, we show

typical artifacts of the method in Fig. S3. Note that most
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Reference view
StereoLayers-2
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StereoLayers-2
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StereoMag-P4 StereoMag-32

Figure S2. Additional horizontal slices (along the blue line) on scenes from LLFF dataset. Mesh vertices are shown as dots with the
predicted opacity. Colors encode the layer number. The horizontal axis corresponds to the pixel coordinate, while the vertical axis stands
for the vertex depth w.r.t. the reference camera (only the most illustrative depth range is shown). Configurations of StereoLayers method
generate scene-adaptive geometry in a more efficient way than StereoMag, resulting in more frugal geometry representation, while also
obtaining better rendering quality.
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Full frame Ground truth Rendered view

Figure S3. Examples of most common failures of StereoLayers
outputs. In most cases they can be attributed to a combination of
photometric scene complexity, and an unfortunate choice of the
input pair.

of the drawbacks are visible only when the camera moves
around the scene and are not distinguishable in randomly
selected frames without temporal context.

When the baseline is magnified by a great factor, one
can observe “stretching” faces of our layered mesh near
the depth discontinuities. We believe that this type of ar-
tifact is caused by the mesh structure of our geometry. The
“ghost” semitransparent textures is another common issue

of the synthesized views. One of the problems could also be
attributed to inconsistent depth prediction when some pix-
els have minor errors in depth values, which leads to small
ghostings.

S4. MPI postprocessing

In this section we briefly describe the postprocessing
procedure that aims to merge the predicted rigid planes of
StereoMag-32 [8] to the fewer number of deformable lay-
ers. In our experiments, the final number of such layers
equals 8, that coincides with the basic configuration of our
approach.

The pipeline partially follows the one described in [1].
Firstly, we divide 32 planes into eight groups and compose-
over the depth within each group on top of the furthest plane
in the group. This operation results in 8 deformable layers.
To infer the textures of those layers, we perform the second
step, averaging the color c and transmittance ᾱ of RGBA
planes within each group over the set V (t) of rays passing
through the texel t. Namely, we run the Monte Carlo ray
tracing defined by the equations below,

log (ᾱt) = λ−1
∫
V (t)

w (r) [log (ᾱr)]
2
dr,

ct = λ−1
∫
V (t)

w (r) cr log (ᾱr) dr,

where λ is a normalizing constant

λ =

∫
V (t)

w (r) log (ᾱr) dr.

The distribution of rays r ∈ V (t) is constructed as follows:
the line passing through the pinhole camera and texel t in-
tersects the reference image plane at the pixel coordinate p.
The coordinate q is normally distributed around p, and the
ray r passes from q through t. The weighing function w (r)
is equal to the Gaussian density value at q. Color cr and
transmittance ᾱr values are computed with the compose-
over operation along the ray r over the planes that belong to
the same group as texel t does.

S5. Occlusion masks

In this section, we describe the heuristic to create masks
of occluded regions. Examples of such masks are provided
in Fig. S4.

S5.1. Cycle consistency of optical flows

Consider two images A and B, without loss of general-
ity, they are assumed to be grayscale. For the coordinates
of the pixel p we denote the color of this pixel in the image
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A as A [p] . The coordinate grid G is such a “image” (two-
dimensional matrix) that ∀pG [p] = p. We define the back-

ward flow matrix
←
FAB of images A and B and the back-

ward warping backward operation as follows

B = backward

(
A,
←
FAB

)
⇐⇒ ∀q B [q] = A

[
←
FAB [q]

]
. (S1)

Similarly, forward flow matrix
→
FAB and forward

warping are defined as

B = forward

(
A,
→
FAB

)
⇐⇒ ∀pA [p] = B

[
→
FAB [p]

]
. (S2)

Lemma S5.1. For two optical flows of the same kind FAB

and FBA the following cycle-consistency property holds

backward (FBA, FAB) = G.

Proof. We assume that the pixel p of the image A corre-
sponds to the pixel q of the image B under the warping
operation. This implies the following equations:

B [q] = A [p] , (S3)
←
FAB [q]

(S1)
= p, (S4)

→
FAB [p]

(S2)
= q. (S5)

By a symmetry argument, we also obtain

←
FBA [p]

(S4)
= q, (S6)

→
FBA [q]

(S5)
= p. (S7)

Let X be the result of warping one backward flow with an-
other,

X = backward

(
←
FBA,

←
FAB

)
.

From the definition,

X [q]
(S1)
=
←
FBA

[
←
FAB [q]

]
(S4)
=
←
FBA [p]

(S6)
= q,

therefore, X = G.
The case of forward flow may be considered in the same

way. Denote the result of warping with Y ,

Y = backward

(
→
FBA,

→
FAB

)
.

The value in the pixel p gives us the following

Y [p]
(S1)
=
→
FBA

[
→
FAB [p]

]
(S5)
=
→
FBA [q]

(S7)
= p,

which leads to Y = G.

Figure S4. Occlusion masks, obtained with a pretrained optical
flow estimator and our heuristic. Left: reference images; mid-
dle: generated novel views; right: magenta masks indicate the
parts of novel views that were occluded from the reference point
of view. The area of such regions in SWORD is much greater than
for RealEstate10k, justifying its usage.

S5.2. Estimation of occlusion masks

We employ the pretrained optical flow estimator [6] and
compute optical flows F̂rn and F̂nr between the reference
view Ir and ground-true novel view In. According to the
lemma S5.1, these flows should be cycle-consistent. How-
ever, the views do not completely correspond to each other
because of the presence of occluded regions. Therefore, the
result Ĝ of warping of one flow with another

Ĝ = backward
(
F̂rn, F̂nr

)
does not result in the “ideal” coordinate grid.

Based on this, we treat a pixel p that |Ĝ [p] − p| < ε
as non-occluded because the optical flow estimator can find
the corresponding pixel in another image. Otherwise, we
include the pixel in the occlusion mask. The threshold ε is
set to the size of one pixel. As a downside, the flow estima-
tor is very sensitive to the image borders. To overcome this
issue, we use central crops that finally contain reasonable
masks.
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