
6. Appendix

6.1. Null Feature Experiment

More visual examples for the null feature experiment are
provided in Fig. 6.

6.2. Feature Saturation Experiment

The visual example for feature saturation is provided in
Fig. 5.

6.3. Optimization (Focal Loss) Details

The optimization problems in the framework have mul-
tiple losses. Therefore it is a challenge to balance the op-
timization between the losses. We use the focal loss [10]
method to balance the optimization. The following terms
each indicate the keys used during optimization phase as
focal loss entries.

L = �t(�t(X))

{fa} = tanh(
|�t(X{fa})� �t(X{})|

min(|�t(X{fa})|, |�t(X{})|)
)

{fa, fb} = tanh(
|�t(X{fa, fb})� �t(X{fa})|

min(|�t(X{fa, fb})|, |�t(X{fa})|)
)

(12)
where �t(.) designates softmax function corresponding

to the target t. The weighted average of the term L is em-
ploied in each of the loss terms as the multiplicand of the
first term. The weighted average of other two are used in
their corresponding scenarios as the multipicand of the lat-
ter terms. The weighted average through each iteration is
calculated in the following manner:

̂t+1 = ↵t + (1� ↵)̂t (13)

During all the experiments, the ↵ is set to 0.1, and the inti-
tial value for  is 0.5. To further faciliate the optimization
phase, we initially optmize the features to maximize �t(X)
fo their designated target class.

6.3.1 Comparison to Existing Evaluations

Each evaluation in Sec. 2.2 evaluates explanations from a
different perspective. [16, 34, 35] discuss the axioms theo-

retically. Proofs are broken in practice. E.g. our framework
identifies issues with DeepSHAP (as also shown in [34]).
Our framework is the practical incarnation for the axioms
in [16, 34, 35]. [31] provides a class-sensitivity evaluation.
Our results complement them. The metric in [31] considers
the correlation between maps of different classes, thus iden-
tifies gradient as class sensitive. But the low correlation is
due to a mere shift in noise, which our method avoids. The
pointing game [38] assumes the model uses features that we

humans use. We remedy this by having control over gener-
ated features (Sec 2.2). GBP, IG get high scores in [25], but
we reveal they attribute to null-feature and are class insen-
sitive. [11] aims to evaluate another aspect, feature impor-
tance (Sec 2.2 for limitations). A method such as FullGrad
and GradCAM++ can highlight important features, but we
show they attribute to Null and are class-insensitive. In
cases where there is only one highly activating region in
the input, these methods will reveal them ( [14]).



Image GradCAM GradCAM++ Gradient FullGrad GuidedBackProp
Integrated
Gradients DeepSHAP IBA

Extremal
Perturbation

Figure 5. Feature Saturation Experiment: Each row is a sample from the feature saturation experiment. In this experiment, the features
(patches) each saturate the output. In other terms, each individually generates the same output as their combination. A desired property for
the attribution method is to distribute the contribution equally between the features. We observe that Extremal Perturbation and IBA can
lean toward attributing the output to only one of the features. The formulation of these two method is based on keeping a region that keeps
the output prediction. Thus, it is expected that they lean toward one feature.
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Figure 6. Null Feature Experiment: Each row represents a sample from the null feature experiment. In each row, the image on the left
represents the generated features on the reference (noise) input. The features are generated using the model itself. Within the image, the
lower feature (patch) is generated such that it is a null feature for the output. The rest of the images represent different explanations. As the
second feature is a null feature, an explanation method should not assign importance to it. We observe that GradCAM, IBA, and Extremal
Perturbation perform best in avoiding the null feature.


