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A. Implementation

A.1. Architecture

The overall architecture of our method follows StarGAN
v2 [2]. We normalized the output content code in each pixel
to the unit length following Park et al. [9]. When using
the StyleGAN2-based generator, we replaced the instance
normalization of the content encoder with pixel normaliza-
tion [4]. We did not use an equalized learning rate [6].

The style-aware discriminator consists of M = 0.25 ∗
log2(resolution) residual blocks followed by an average
pooling. The style head and the discrimination head are
two-layer MLPs. We used the same discriminator for the
StyleGAN2-based and AdaIN-based models. We set di-
mension of prototypes to 256. We set K to 32 for AFHQ,
64 for CelebA-HQ, and 128 for LSUN churches and FFHQ.

A.2. Augmentation

Geometric transform We used the RandomRation
and RandomScaleAdjustment augmentations. We ap-
plied reflection padding to avoid empty areas in the image
before applying the geometric transform. We chose the ro-
tation angle to be between -30 and 30 and the scale param-
eter between 0.8 and 1.2. Each transform was applied with
a probability of 0.8.
Cutout The style of the human face domain is integral
to characteristics other than color and texture, including
gender, expression, and accessories. We can read such
information (i.e., the style) from an image even when
part of a human face is occluded. Accordingly, we em-
ployed cutout augmentation. In practice, we used the
RandomErasing method from the torchvision li-
brary with the following probability and scale parameters:
p=0.8 and scale=(0.1, 0.33).
Color distortion We observed that when the variation of
the dataset is significant (e.g., FFHQ) or when the batch
size is small, it was not possible to manipulate short hair
into long hair. In that case, we employed weak color jit-
tering. More specifically, we applied the ColorJitter
method with the following parameters with a proba-
bility of 0.8: brightness=0.2, contrast=0.2,

saturation=0.2, hue=0.01. Note that, we applied
this augmentation only with the CelebA-HQ dataset using
AdaIN and the FFHQ experiments.

A.3. Style code sampling

We sampled the style code from the dataset X with a
probability p. Otherwise, we sampled from the prototypes.
When sampling from a dataset, we used a randomly shuf-
fled minibatch x′ to create a style code z̃s = fs(x′). In the
case of sampling from the prototypes, we used the follow-
ing pseudocode. In practice, we set p to 0.8 except in the
case of for longer training (25 M), where we used 0.5.

1 # C: prototypes (K x D)
2 # N: batch size
3 # K: number of prototypes
4 # D: prototype dimension
5

6 @torch.no_grad()
7 def sample_from_prototypes(C, N, eps=0.01):
8 K, D = C.shape
9

10 samples = C[torch.randint(0, K, (N,))]
11 if torch.rand(1) < 0.5: # perturbation
12 eps = eps * torch.randn_like(samples)
13 samples = samples + eps
14 else: # interpolation
15 targets = C[torch.randint(0, K, (N,))]
16 t = torch.rand((N, 1))
17 samples = torch.lerp(samples, targets, t)
18 return F.normalize(samples, p=2, dim=1)

A.4. Training details

In every iterations, we sampled a minibatch x of N im-
ages from the dataset. To calculate the swapped predic-
tion loss, we created two different views x1 = T1(x), x2 =
T2(x), where T is an augmentation. We reused the x1 as the
input of the generator. We obtained style codes by sampling
the prototype with probability p or encoding reference im-
ages x′ = shuffle(x1) with probability (1− p). In prac-
tice, we usually set p as 0.8, but 0.5 when training is long
enough (longer than 5 M). When sampling from the proto-
type, the first two of Eq. 2 was selected uniformly. The
adversarial loss for updating the discriminator D was cal-
culated for G(x1, s), and the adversarial loss for updating



FID

Method Churches FFHQ 2562

Ours (latent) 9.0 5.2
Ours (reference) 12.2 5.1
*SwapAE [9] 49.6 -

StyleGAN2 [6] 4.1 3.7

Table 6. Quantitative comparison using the unlabeled datasets.
An asterick (*) indicates that we used the pre-tranined networks
provided by the authors. Note that we calculated StyleGAN2 re-
sults using randomly sampled images, not manipulated images
(i.e. style mixing).

FIDlerp

Method AFHQ CelebA-HQ

Ours 11.2 25.4
Ours-AdaIN 14.0 31.0
Liu et al. [8] 30.0 35.8
StarGAN v2 [2] 32.2 76.8

Table 7. Quantitative comparison of the style interpolation.

the generator G was calculated for G(x1, x) and the recon-
structed image.

We applied the lazy R1 regularization following [6]. To
stabilize the SwAV training, we adopted training details
from the original paper [1]. In more detail, we fixed the
prototype for the first 500 iterations and used the queue af-
ter the 20,000th iteration if K < N . We linearly ramped up
learning rate for the first 3000 iterations.

We initialized all of the networks using Kaiming initial-
ization [3]. Following Choi et al. [2], we used ADAM [7]
with a learning rate of 0.0001, β1 = 0.0 and β2 = 0.99. We
scaled the learning rate of the mapping network by 0.01,
similar to previous studies [2, 5]. By default, we used a
batch size of 16 for the AdaIN-based model and 32 for
the StyleGAN2-based model. We used a larger batch size
(64) and longer training (25 M) for the FFHQ and LSUN
churches datasets. We observed that the performance im-
proves as the batch size and the number of training images
increase.

B. Additional results
B.1. Quantitative results for the unlabeled datasets

We measured the quality of the latent-guided and
reference-guided synthesis on the unlabeled datasets in Ta-
ble 6. The proposed method significantly outperforms the
Swapping Autoencoder [9] on the LSUN churches valida-
tion set. For reference, we also report the results of uncon-
ditionally generated StyleGAN2 images. Even though the
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Figure 7. Qualitative comparison of the style interpolation. We
sampled three images (one source and two references) from the
dataset and synthesized images using the style code interpolated
between the two style codes obtained from the two reference im-
ages.

proposed method is inferior to unconditional GANs (i.e.,
StyleGAN2 [6]), note that unconditional GANs are unsuit-
able for image editing [9].

B.2. Quality of the style interpolation

To evaluate the quantitative results of the style interpo-
lation, we calculated FID between the training set and im-
ages synthesized using interpolated styles (FIDlerp). We
sampled images from two different domains and generated
ten style codes by interpolating their corresponding style
code. Then, we synthesized ten images using those style
codes (we used the first sample as a source image). We cre-
ated 30,000 fake images for the AFHQ and a total of 20,000
fake images for CelebA-HQ. As shown in Table 7, the pro-
posed method outperforms the supervised approaches [2,8]
in terms of FID. Fig. 7 shows the qualitative comparison
between the proposed model and baselines. The proposed
approach was the only model that produced smooth inter-
polation results while maintaining the content such as back-
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Figure 8. Qualitative results for the separated method.

K 32 64 128 256 512 1024

k-NN↑ 99.1 99.1 98.8 98.5 96.3 95.6
mFID↓ 14.7 15.8 28.4 26.6 34.6 42.1

Table 8. Effect of the number of prototypes. Note that mFID of
supervised method (StarGAN v2) [2] is 24.1.

grounds.

B.3. Additional qualitative results

Here, we include qualitative results for various datasets.
Fig. 9 shows the results of the model trained at 512×512
resolution on the AFHQ v2 dataset. Fig. 10 and 11 show
the reference-guided image synthesis results on unlabeled
datasets (FFHQ and LSUN churches). Fig. 12 shows the
reference-guided image synthesis results for the Oxford-
102 dataset. Finally, we visualize the all prototypes learned
with the AFHQ and CelebA-HQ datasets in Fig. 13.

C. Additional analyses
C.1. Effect of the style-aware discriminator

The low k-NN metric of the separated method im-
plies that the style space is not highly correlated with the
species. This is further supported by the qualitative re-
sults. As shown in Fig. 8, the separated method learns
to translate the tone of the image rather than desired style
(i.e., the species), which explains the very high mFID1.

C.2. Ablation based on the number of prototypes

In Table 8, we evaluate the effect of the number of proto-
types (K) on the proposed method. We trained the AdaIN-
based model with varying K using the AFHQ dataset. We
observed that the appropriate number of prototypes was crit-
ical to the synthesis quality. However, even when the value
of K was large, the mFID value did not deviate from a cer-
tain range. We did not conduct experiments to determine the

1In the AFHQ dataset, the models that cannot change species result in
high mFID, since the FID between different species can be rather large.
For example, the FID between a real cat and real dog is 170.4.

optimal value of K for the other datasets; instead, we set the
value of k based on the number of images in the dataset.
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Figure 9. Reference-guided synthesis results on the AFHQ v2 dataset. The model was trained and tested at 512×512 resolution.



Figure 10. Reference-guided synthesis results on the FFHQ dataset.



Figure 11. Reference-guided synthesis results on the LSUN churches dataset. The model was trained at 256×256 resolution and tested at
256 resolution on the shorter side.



Figure 12. Reference-guided synthesis results on the Oxford-102 dataset. The model was trained and tested at 256×256 resolution.
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Figure 13. Visualization of all prototypes. (Top) 32 prototypes learned with the AFHQ dataset. (Bottom) 64 prototypes learned with the
CelebA-HQ dataset.


