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A. Societal Impact

As deep neural networks require large amounts of data,
data-related industries are expanding. One of the prevalent
business models of the industries is data annotation. How-
ever, the cost of data annotation is burdensome for general
users. To reduce the cost, approaches for weakly supervised
learning have been proposed, which only requires weaker
supervision than fully supervised learning. Since we propose
a method of weakly supervised object localization, image-
level annotation is sufficient. Our method may threaten the
business model of data labeling companies that provide fine-
grained labels such as pixel-level annotations and bounding
box annotations.

B. Experimental Details

We employ SGD optimizer with momentum 0.9
and weight decay 5 × 10−4. Following the work of
Choe et al. [2], the networks are divided into two parts, and
the learning rate is set differently for those two. VGG16 [8]
is divided into old layers and newly added layers when mod-
ifying it to VGG16-GAP [11], and ResNet50 [4] is divided
into the layers prior to the fourth layer and the others. On
the CUB-200-2011 dataset [9], the learning rate is set to
4× 10−3 and 2× 10−3 for the former part of VGG16 and
ResNet50, respectively. It is set to 2 × 10−2 for the latter
part of both backbones. On the ImageNet-1K dataset [7], the
learning rate is set to 2 × 10−5 and 1 × 10−5 for the for-
mer part of VGG16 and ResNet50, respectively. It is set to
1× 10−4 for the latter part of both backbones. The proposed
method is implemented using PyTorch [6].

Following the work of Choe et al. [2], we use
train-fullsup [2] of each dataset as a validation set to
select the best model for MaxBoxAccV2 [2] scores. Please
refer to the work of Choe et al. [2] for the details of the
dataset.

*Correspondence to: Sungroh Yoon (sryoon@snu.ac.kr).

C. Additional Results and Discussions

Additional results and discussions are presented to sup-
port the experimental results in the main paper.

C.1. Sensitivity to Bounding Box Threshold

A threshold is required to draw a bounding box around
an object from a continuous localization map. Fig. A1 shows
that the change of localization accuracy with various IoUs
when varying the threshold. In each plot with IoU δ, the
maximum value becomes MaxBoxAccV2(δ) score. For
all δ, the curve of our method is consistently above the curve
of the vanilla method, which shows that the superiority of the
localization performance of our method does not depend on
the threshold. When δ is 0.3 and 0.5, the curve of our method
nearby a maximum value is flatter than the curve of the
vanilla method. This shows that our method is less sensitive
to the threshold for a bounding box than the vanilla method.
When δ is 0.7, our method is sharper than the vanilla method,
but the localization accuracy of our method is more than
twice that of the vanilla method, so the flatness comparison
is meaningless.

C.2. Feature Direction Alignment

Fig. A3 shows some examples of CAM, F , and S from
the vanilla method and our method on the CUB-200-2011
and ImageNet-1K datasets. In S from the vanilla method,
the overall values are similar and some regions that belong to
the object have low values. For instance, in the ‘car’ example
(in the second row and second column of the ImageNet-1K
dataset), the middle part of the object has low similarity,
resulting in low activation in the CAM. Different from the
vanilla method, the values of S from our method are high
in the object regions and low in the background regions.
Furthermore, the values of F are high across the entire ob-
ject region. This makes the CAM that captures more object
region.
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Figure A1. Comparisons of the localization performance when varying threshold on the CUB-200-2011, using VGG16 as a backbone. Three
plots show the localization accuracy with IoU 0.3, 0.5, and 0.7. The maximum value of each curve is MaxBoxAccV2(δ).

Figure A2. Comparison of density histogram on maxu Fu with
the vanilla method, EIL, and consistency with attentive dropout.
The analyzes are performed on the CUB-200-2011 test set using
VGG16 as a backbone.

C.3. Consistency with Attentive Dropout

We compare consistency with attentive dropout with
EIL [5], the most recent one among the previous erasing
methods [3, 5, 10], on the CUB-200-2011 using VGG16. As
mentioned in the main paper, attentive dropout directly regu-
larizes feature activation, whereas EIL indirectly influences
the activation through class prediction. Fig. A2 shows the
different effect on feature activation of consistency with at-
tentive dropout and EIL. To encourage a model to predict
correct class without highly activated region, EIL enhances
the maximum value. In contrast, consistency with attentive
dropout reduces the maximum value through regularization.
As a result, attentive dropout distributes the activations more
effectively than EIL (Fig. 7(b) in the main paper).

C.4. Localization Results

Fig. A4 compares the localization results from the vanilla
method [11] and our method on the CUB-200-2011 and
ImageNet-1K datasets. While the vanilla method misses the
less discriminative parts, e.g., wings and tails of birds and
bodies of animals, our method successfully captures the
entire object region.

Method PxAP

CAM [28] CVPR ’16 58.3
ADL [3] CVPR ’19 58.7
CutMix [28] ICCV ’19 58.1
CAM+PaS [1] ECCV ’20 59.6
ADL+IVR [9] ICCV ’21 59.3
CALM [10] ICCV ’21 61.3
Ours 63.7

Table A1. Comparison of MaxBoxAccV2 scores on the OpenIm-
ages dataset using VGG16 as a backbone.

C.5. Sensitivity to Hyperparameters

In the main paper, we mention as a limitation that there
are several hyperparameters to be decided in our method. We
provide further analysis with a different dataset and back-
bone than that presented in the main paper.
CUB-200-2011 on ResNet50. We find the best localization
performance at 0.6 for λsim, 0.07 for λnorm, and 2 for λdrop,
respectively. The thresholds τfg and τbg for Lsim are set to
0.4 and 0.2, respectively. The hyperparameters γ and p for
Ldrop are set to 0.8 and 0.25, respectively. Fig. A5(a) shows
the change of GT Loc when varying the hyperparameters.
The sensitivity to each hyperparameter is similar to that on
the CUB-200-2011 dataset using VGG16 as a backbone.
λsim affects the localization performance the most among
hyperparameters.
ImageNet-1K on VGG16. The best localization perfor-
mance is found at 0.5 for λsim, 0.2 for λnorm, and 3 for λdrop,
respectively. The hyperparameters τfg, τbg, γ, and p are set
to 0.5, 0.3, 0.8, and 0.5, respectively. Fig. A5(b) shows the
GT Loc at various hyperparameter values. Different from
the CUB-200-2011 dataset, the localization performance is
most affected by λdrop. The sensitivities to the other hyper-
parameters are similar to those with a different dataset and
backbone.
Discussion. The hyperparameters are set differently on the
two datasets. This is because their tasks are somewhat dif-
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ferent; the classification on the CUB-200-2011 dataset is
a fine-grained classification. We additionally evaluate our
methods on OpenImages30K [1, 2], where the task is similar
to that on the ImageNet-1K dataset. We use VGG16 as a
backbone and set the hyperparameters the same as those
on the ImageNet-1K dataset. Note that the OpenImages30K
dataset is annotated with a mask, and we use PxAPmetric for
evaluation, following the work of Choe et al. [2]. As shown
in the Tab. A1, our method outperforms the recent methods
by a large margin on the OpenImages30K dataset as well,
which shows the hyperparameters used on the ImageNet-1K
dataset can be applied successfully to a different dataset.
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Figure A3. Comparisons of CAM, F , and S between the vanilla method and our method on the CUB-200-2011 and ImageNet-1K datasets,
using VGG16 as a backbone.
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Figure A4. Comparison of localization results from the vanilla method and our method on CUB-200-2011 and ImageNet-1K datasets, using
VGG16 as a backbone. Blue boxes denote the ground truth bounding boxes and green boxes denote the predicted bounding boxes.
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(a)

(b)

Figure A5. Effect of balancing factors for loss and various hyperparameters. The plots show the results on the CUB-200-2011 test set with
ResNet50 and (b) those on the ImageNet-1K validation set with VGG16.
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