
Supplementary Material
Gaussian Process Modeling of Approximate Inference Errors for Variational Autoencoders

Minyoung Kim
Samsung AI Center Cambridge, UK

mikim21@gmail.com

1. Detailed Derivations for GP Inference and Learning
We provide detailed derivations for the variational inference for GP (Sec. 3.3 in the main paper). Specifically, we show

that
KL

(
q(W,U)||p(W,U|D)

)
= log p̂θ(D)−

∑
x∈D

ELBO(θ,Λ;x), (1)

where p̂θ(D) = EW,U∼N (0,I)

[∏
x e

Lθ(W,U;x)
]

is the marginal data likelihood using the surrogate likelihood function

Lθ(W,U;x) := Eq

[
log pθ(x,z)

q(z|x,W,U)

]
, and

ELBO(θ,Λ;x) = Eq(z|x)
[
log pθ(x|z)

]
− Eq(W,U)[KL(q(z|x,W,U)||p(z))]− 1

N
KL(q(W,U)||N (0, I)). (2)

Proof. Starting from the left hand side of (1),

KL
(
q(W,U)||p(W,U|D)

)
= Eq(W,U)

[
log

q(W,U)

p(W,U|D)

]
(3)

= Eq(W,U)

[
log

q(W,U) p̂θ(D)

N (W,U;0, I)
∏

x∈D eLθ(W,U;x)

]
(4)

= log p̂θ(D) + KL(q(W,U)||N (0, I))−
∑
x∈D

Eq(W,U)

[
Lθ(W,U;x)

]
(5)

= log p̂θ(D) + KL(q(W,U)||N (0, I))−
∑
x∈D

(
Eq(z|x)

[
log pθ(x|z)

]
− Eq(W,U)

[
KL(q(z|x,W,U)||p(z))

])
. (6)

For the last equality we use the GP posterior marginalized encoder distribution,

q(z|x) =
∫∫

q(W,U)q(z|x,W,U)dWdU. (7)

Arranging the last equation completes the proof.

2. Experimental Setups and Network Architectures
For all optimization, we used the Adam optimizer with batch size 128 and learning rate 0.0005. We run the optimization

until 2000 epochs. We use the same encoder/decoder architectures for competing methods including our GPVAE, VAE, SA
(semi-amortized approach), and also the base density in the flow-based models IAF and HF. The network architectures are
slightly different across the datasets due to different input image dimensions. We summarize the full network architectures
in Table 1 (MNIST and OMNIGLOT), Table 2 (CIFAR10 and SVHN), and Table 3 (CelebA).

3. Additional Experiments on CIFAR10
The results on the CIFAR10 dataset are reported in Table 4.

1

Table 1. Encoder and decoder network architectures for MNIST and OMNIGLOT datasets. In the convolutional and transposed convolu-
tional layers, the paddings are properly adjusted to match the input/output dimensions.

ENCODER DECODER

INPUT: (28× 28× 1) INPUT: z ∈ Rp (p ∈ {10, 20, 50})

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 256; RELU

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 3 · 3 · 64; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 256; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 ×p (p = DIM(z) ∈ {10, 20, 50}) 1 (4 × 4) TRANSPOSED CONV.; STRIDE 2

Table 2. Encoder and decoder network architectures for CIFAR10 and SVHN datasets.

ENCODER DECODER

INPUT: (32× 32× 3) INPUT: z ∈ Rp (p ∈ {10, 20, 50})

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 512; RELU

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 4 · 4 · 64; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 512; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 ×p (p = DIM(z) ∈ {10, 20, 50}) 3 (4 × 4) TRANSPOSED CONV.; STRIDE 2

Table 3. Encoder and decoder network architectures for CelebA dataset.

ENCODER DECODER

INPUT: (64× 64× 3) INPUT: z ∈ Rp (p ∈ {10, 20, 50})

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 512; RELU

32 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) FC. 4 · 4 · 64; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 64 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

64 (4 × 4) CONV.; STRIDE 2; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 512; LEAKYRELU (0.01) 32 (4 × 4) TRANSPOSED CONV.; STRIDE 2; RELU

FC. 2 ×p (p = DIM(z) ∈ {10, 20, 50}) 3 (4 × 4) TRANSPOSED CONV.; STRIDE 2

4. Importance Weighted Sampling Estimation (IWAE)
To report the test log-likelihood scores, log p(x), we used the importance weighted sampling estimation (IWAE) [1].

More specifically, IWAE = log 1
K

∑K
i=1

p(x,zi)
q(zi|x) , where z1, . . . , zK are i.i.d. samples from q(z|x). It can be shown that

IWAE lower bounds log p(x) and can be arbitrarily close to the target as the number of samples K goes large. We used
K = 100 throughout the experiments.

5. Fully-Connected Decoder Networks
In the main paper we used the convolutional networks for both encoder and decoder models. This is a reasonable archi-

tectural choice considering that all the datasets are images. It is also widely believed that convolutional networks outperform
fully connected networks for many tasks in the image domain [2, 4, 5]. One can alternatively consider fully connected net-
works for either the encoder or the decoder, or both. Nevertheless, with the equal number of model parameters, having
both convolutional encoder and decoder networks always outperformed the fully connected counterparts. In this section

Table 4. (CIFAR10) Test log-likelihood scores (unit in nat) estimated by the importance weighted sampling [1] with 100 samples. The
figures in the parentheses next to model names indicate: the number of SVI steps in SA, the number of flows in IAF and HF, and the
number of mixture components in ME and RME. The superscripts are the standard deviations. The best (on average) results are boldfaced
in red. In each column, we perform the two-sided t-test to measure the statistical significance of the difference between the best model
(red) and each competing method. We depict those with p-values greater than 0.01 as boldfaced blue (little evidence of difference). So,
anything plain non-colored indicates p ≤ 0.01 (significantly different). Best viewed in color.

DIM(z) = 10 DIM(z) = 20 DIM(z) = 50

VAE 1645.74.9 2089.75.8 2769.97.1

SA(1) 1645.05.6 2086.06.2 2765.07.1

SA(2) 1648.64.8 2088.26.6 2764.17.7

SA(4) 1648.55.2 2083.98.4 2766.76.6

SA(8) 1642.15.4 2086.06.1 2766.67.5

IAF(1) 1646.04.9 2081.15.4 2762.67.2

IAF(2) 1642.04.9 2084.65.6 2763.04.3

IAF(4) 1646.05.1 2083.26.1 2760.67.0

IAF(8) 1643.64.6 2087.14.6 2761.86.9

HF(1) 1644.54.4 2079.15.5 2757.94.4

HF(2) 1636.74.9 2086.05.9 2764.74.4

HF(4) 1642.14.9 2082.37.3 2763.44.4

HF(8) 1639.95.4 2084.76.1 2765.57.2

ME(2) 1643.65.1 2086.66.8 2767.99.4

ME(3) 1638.65.8 2079.85.9 2770.27.8

ME(4) 1641.85.4 2084.76.9 2763.59.3

ME(5) 1641.75.6 2080.25.9 2766.16.3

RME(2) 1652.35.0 2095.75.8 2779.66.6

RME(3) 1654.24.9 2099.17.2 2783.06.1

RME(4) 1655.06.4 2096.65.9 2781.16.6

RME(5) 1654.54.6 2098.45.8 2782.96.4

GPVAE 1668.65.6 2113.06.7 2786.58.2

we empirically verify this by comparing the test likelihood performance between the two architectures. We particularly
focus on comparing two architectures (convolutional vs. fully connected) for the decoder model alone, while retaining the
convolutional network structure of encoders for both cases.

Using the fully connected decoder network allows us to test the recent Laplacian approximation approach [3] (denoted
by VLAE), which we excluded from the main paper. They use a first-order approximation solver to find the mode of the
true posterior (i.e., linearizing the decoder function), and compute the Hessian of the log-posterior at the mode to define the
(full) covariance matrix. This procedure is computationally feasible only for a fully connected decoder model. We conduct
experiments on MNIST and OMNIGLOT datasets where the fully connected decoder network consists of two hidden layers
and the hidden layer dimensions are chosen in a manner where the total number of weight parameters is roughly equal to the
convolutional decoder network that we used in the main paper.

Table 5 summarizes the results. Among the fully connected networks, the VLAE achieves the highest performance.
Instead of doing SVI gradient updates as in the SAVI method (SA), the VLAE aims to directly solve the mode of the true
posterior by decoder linearization, leading to more accurate posterior refinement without suffering from the step size issue.
Our GPVAE, with the fully connected decoder networks still improves the VAE’s scores, but the improvement is often less
than that of the VLAE. However, when compared to the convnet decoder cases, even the conventional VAE significantly
outperforms the VLAE in the ability to represent the data (markedly higher log-likelihood scores). The best VLAE’s scores
are lower than even VAE’s using convolutional decoder network. Restricted network architecture in the VLAE is its main
drawback.

We also compare the test inference times of our GPVAE model and the VLAE using the fully connected decoder networks.
Note that VLAE is a semi-amortized approach that needs to perform the Laplace approximation at test time. Thus, another
drawback is the computational overhead for inference, which can be demanding as the number of linearization steps increases.
The per-batch inference times (batch size 128) are shown in Table 6. For the moderate or large linearization steps (e.g., 4 or

Table 5. (Fully connected vs. convolutional decoder networks) Test log-likelihood scores (unit in nat). The figures without parentheses are
the scores using the fully connected networks, whereas figures in the parentheses are the scores using the convolutional decoder networks.
Both architectures have roughly equal number of weight parameters. The number of linearization steps in the VLAE is chosen among
{1, 2, 4, 8}.

MNIST OMNIGLOT
DIM(z) = 10 DIM(z) = 50 DIM(z) = 10 DIM(z) = 50

VAE 563.6 (685.1) 872.6 (1185.7) 296.8 (347.0) 519.4 (801.6)
SA (1) 565.1 (688.1) 865.8 (1172.1) 297.6 (344.1) 489.0 (792.7)
SA (2) 565.3 (682.2) 868.2 (1176.3) 295.3 (349.5) 534.1 (793.1)
SA (4) 565.9 (683.5) 852.9 (1171.3) 294.8 (342.1) 497.8 (794.4)
SA (8) 564.9 (684.6) 870.9 (1183.2) 299.0 (344.8) 500.0 (799.4)
VLAE (1) 590.0 922.2 307.4 644.0
VLAE (2) 595.1 908.8 307.6 621.4
VLAE (4) 605.2 841.4 318.0 597.7
VLAE (8) 605.7 779.9 316.6 553.1
GPVAE 568.7 (693.2) 882.3 (1213.0) 302.5 (352.1) 612.5 (813.0)

Table 6. (Fully connected networks as decoders) Per-batch inference time (unit in milliseconds) with batch size 128. The figures without
parentheses are the times using the fully connected networks, whereas figures in the parentheses are the times using the convolutional
decoder networks.

MNIST OMNIGLOT
DIM(z) = 10 DIM(z) = 50 DIM(z) = 10 DIM(z) = 50

VLAE (1) 10.1 12.9 11.2 12.1
VLAE (2) 11.2 13.4 13.2 16.9
VLAE (4) 14.8 17.8 15.4 18.7
VLAE (8) 20.7 30.8 22.1 26.4
GPVAE 5.7 (5.9) 9.8 (9.9) 6.9 (6.9) 10.2 (10.2)

8), the inference takes significantly (about 2× to over 3×) longer than that of our GPVAE (amortized method).

References
[1] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2016. In Proceedings of the Second

International Conference on Learning Representations, ICLR. 2, 3
[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks, 2012. In

Advances in Neural Information Processing Systems. 2
[3] Yookoon Park, Chris Kim, and Gunhee Kim. Variational Laplace autoencoders. In International Conference on Machine Learning,

2019. 3
[4] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial

networks. In arXiv preprint, 2015. 2
[5] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing

properties of neural networks. In arXiv preprint, 2013. 2

	. Detailed Derivations for GP Inference and Learning
	. Experimental Setups and Network Architectures
	. Additional Experiments on CIFAR10
	. Importance Weighted Sampling Estimation (IWAE)
	. Fully-Connected Decoder Networks

