
InstaFormer: Instance-Aware Image-to-Image Translation with Transformer
-Supplementary Material-

In this document, we describe detailed network architecture, PyTorch-like pseudo-code, and additional results for “In-
staFormer: Instance-Aware Image-to-Image Translation with Transformer”.

A. Experimental Details
A.1. Network Architecture of InstaFormer

We first summarize the detailed network architecture of our InstaFormer in Table 1. We basically follow the content
encoder and generator architecture from CUT [5] with Transformer blocks and style encoder. The double-line inside Encoder
table indicates the end of content encoder, while style encoder has same structure with content encoder but has additional
Adaptive Avg. Pool. and Conv-4 as shown below. (.) in the convolution indicates the padding technique, and the structures
of Upsample , Downsample and discriminator are the same as those of CUT [5].

Encoder
Layer Parameters (in, out, k, s, p) Output shape (C ×H ×W)

Conv-1 (Reflection) (3, 64, 7, 1, 3) (64, 352, 352)
InstanceNorm - (64, 352, 352)

ReLU - (64, 352, 352)
Conv-2 (Zeros) (64, 128, 3, 1, 1) (128, 352, 352)
InstanceNorm - (128, 352, 352)

ReLU - (128, 352, 352)
Downsample - (128, 176, 176)

Conv-3 (Zeros) (128, 256, 3, 1, 1) (256, 176, 176)
InstanceNorm - (256, 176, 176)

ReLU - (256, 176, 176)
DownSample - (256, 88, 88)

AdaptiveAvgPool - (256, 1, 1)
Conv-4 (256, 8, 1, 1, 0) (8, 1, 1)

Transformer Aggregator
Layer Parameters (in, out) Output shape (C)

AdaptiveInstanceNorm - (1024)
Linear-1 (1024, 3072) (3072)
Attention - (1024)
Linear-2 (1024, 1024) (1024)

AdaptiveInstanceNorm - (1024)
Linear-3 (1024, 4096) (4096)
GELU - (4096)

Linear-4 (4096, 1024) (1024)

Generator
Layer Parameters (in, out, k, s, p) Output shape (C ×H ×W)

UpSample - (256, 176, 176)
Conv-1 (Zeros) (256, 128, 3, 1, 1) (128, 176, 176)
InstanceNorm - (128, 176, 176)

ReLU - (128, 176, 176)
UpSample - (128, 352, 352)

Conv-2 (Zeros) (128, 64, 3, 1, 1) (64, 352, 352)
InstanceNorm - (64, 352, 352)

ReLU - (64, 352, 352)
Conv-3

(ReflectionPad) (64, 3, 7, 1, 3) (3, 352, 352)

Tanh - (3, 352, 352)

Table 1. Network architecture of our InstaFormer.

A.2. PyTorch-like Pseudo-code

Pseudo-code for Instance-level Content Loss. Here we provide the (PyTorch-like) pseudo-code for Lins
NCE in InstaFormer.

To re-emphasize, our simple instance-level content loss learns the representations for a translation task, effectively focusing
on local object-region; this is unlike classical PatchNCE loss that utilizes the regular-grid patches from features in uncondi-
tional way.

cross_entropy_loss = CrossEntropyLoss()

Input: f_q (BxCxS) and sampled features from MLP(cˆins_i),
where cˆins_i is from E(x)
Input: f_k (BxCxS) are sampled features from MLP(hat(cˆins_i)),
where hat(cˆins_i) is from E(hat(yˆins_i))
Input: tau is the temperature used in NCE loss.
Output: InstNCELoss loss
def InstNCELoss(f_q, f_k, tau=0.07):

batch size, channel size, and number of sample locations
B, C, S = f_q.shape

calculate v * v+: BxSx1
l_pos = (f_k * f_q).sum(dim=1)[:, :, None]

calculate v * v-: BxSxS
l_neg = bmm(f_q.transpose(1, 2), f_k)

The diagonal entries are not negatives. Remove them.
identity_matrix = eye(S)[None, :, :]
l_neg.masked_fill_(identity_matrix, -float('inf'))

calculate logits: (B)x(S)x(S+1)
logits = cat((l_pos, l_neg), dim=2) / tau

return NCE loss
predictions = logits.flatten(0, 1)
targets = zeros(B * S)
return cross_entropy_loss(predictions, targets)

Pseudo-code for Transformer Aggregator. We also provide pseudo-code for the input of T , in order to show how our
novel technique aggregates instance-level content features and global-level content features simultaneously. This enables the
model to pay more attention to the relationships between global scenes and object instances.

Content_out: output feature from content encoder
box_info: box information dimension: batch_size, the number of box, box_information[class, left, top, right, bottom])
num_box: the number of box
patch_embed: patch embedding function
box_patch_embed: box patch embedding function (same as patch embedding)
roi align follow Mask RCNN

def Box_feature_extrcat(feature, box_info):
B, C, H, W = feature.shape
batch_index = arange(0.0, B).repeat(num_box).view(num_box, -1).transpose(0,1).flatten(0,1) # (#Box x B)

(B x #Box), box_info
box_info = box_info.view(-1,5)
roi_info = stack((batch_index, box_info[:, 1] * W, box_info[:, 2] * H, \

box_info[:, 3] * W, box_info[:, 4] * H), dim = 1)
roi_feature = roi_align(feature, roi_info, patch_size) # (B x #Box), C, patch_size, patch_size

return roi_feature

def add_box_feature(self, embed_feature, roi_featrue):
B = embed_feature.shape[0]
embed_box_feature = box_patch_embed(roi_featrue).squeeze().view(B, num_box, -1) # B, #Box, embed_C
aggregator_input = cat((embed_feature, embed_box_feature), dim=1) # B, (#Patch + #Box), embed_C

return aggregator_input

B,C,H,W & B,#Box,box_info > (B x #Box), C, patch_size, patch_size
roi_feature = Box_feature_extrcat(content_out, box_info)
B,C,H,W > B, #Patch, embed_C
embed_feature = patch_embed(content_out)
B, (#Patch + #Box), embed_C
aggregator_input = add_box_feature(embed_feature, roi_feature)

B. Additional Results
B.1. Visualization of Multi-modal Image Translation

We visualize the multimodal translated results in Fig. 1. Our InstaFormer generates not only high-quality visual results,
but also produces results with large diversity.

(a) Input image (Sunny) (b) Translated image 1 (Night) (c) Translated image 2 (Night) (d) Translated image 3 (Night)

Figure 1. Results of multi-modal image translation. We use randomly sampled style codes to generate night images from a sunny image.

B.2. Qualitative Results of Domain Adaptive Object Detection

In the main paper, we have evaluated our method on the task of unsupervised domain adaptation for object detection
providing quantitative results. In this section, we also show the qualitative results of the task in Fig. 2. Our model successfully
works on complex domain adaptation tasks.

(a) Input image (KITTI) (b) Translated image (CityScape)

Figure 2. Qualitative results for domain adaptive detection for KITTI → CityScape.

B.3. Comparison with the State-of-the-Art I2I methods.

As shown in Fig. 3 and Table 2, we additionally compare InstaFormer with SoTA I2I methods, such as TSIT [3], Star-
GANv2 [1] and Smoothing [4] on INIT dataset [6] for sunny→night.

(a) Input (b) TSIT (c) StarGAN2 (d) Smoothing (e) Ours

Figure 3. Comparison with TSIT [3], StarGANv2 [1] and Smoothing [4].

Methods sunny→night
FID↓ SSIM↑

TSIT 90.28 0.822
StarGANv2 88.49 0.545
Smoothing 85.28 0.667
InstaFormer 84.72 0.872

Table 2. More quantitative evaluation.

B.4. Additional Examples on Ablation Study

In the main paper, we have examined the impacts of instance-level loss (Lins
NCE), Transformer encoder (T), normalization,

and another backbone (MLP-Mixer). CUT equals to the setting w/o Lins
NCE, T , and AdaIN. We provide more examples on

INIT dataset [6], depicted in Fig. 4. Our InstaFormer produces better visual results. In particular, as shown in Fig. 4 (d), tiny
objects tend to disappear or be blurred without Lins

NCE.

(a) Content image (b) InstaFormer (c) MLP-Mixer [7] (d) w/o Lins
NCE (e) w/o Lins

NCE, T (f) CUT [5] (g) w/o AdaIN

Figure 4. Ablation study on different settings: instance-level loss (Lins
NCE), Transformer encoder (T), normalization, and another back-

bone (MLP-Mixer). Note that CUT equals to the setting w/o Lins
NCE, T , and AdaIN.

B.5. Additional Translation Results

In the main paper, we have shown some of our results of instance-aware image-to-image translation. Here, we show
additional results in Fig. 5 to demonstrate the robustness of InstaFormer.

(a) Input image (Sunny) (b) Translated image (Night) (c) Translated image (Cloudy) (d) Translated image (Rainy)

Figure 5. Qualitative comparison on INIT dataset [6]: (left to right) sunny, sunny→night, sunny→cloudy, and sunny→rainy results.
Our method achieves high-quality of realistic results while preserving object details as well.

B.6. Variants of InstaFormer Architecture

Effects of the Number of Transformer Blocks. We show qualitative and quantitative comparisons of the number of
Transformers blocks. As described in Table 3 and Fig. 6, the results using 6 and 9 blocks show almost close FID metric [2]
and SSIM metric [8] scores and visual results, while the score of 3 blocks shows insufficient result. As smaller models have
a lower parameter count, and a faster throughput, we choose 6 blocks for our architecture.

Effects of the Number of Heads. We analyze the effects of the number of heads in our model. We show the quantitative
results in Table 3 and visualization of self-attention maps in Fig. 7 according to the number of heads. More heads tend to
bring lower FID metric score and higher SSIM metric score with better self-attention learning, but the scores using 8 heads
shows slight better results compared the scores using 4 heads. Thus, we decide to use 4 heads considering memory-efficiency.

Effects of Transformers. We additionally compare InstaFormer with CNN-based model in Table 3. While single head
version of InstaFormer has a lower parameter count, it shows better performance in terms of FID metric compared to CNN-
based model. This demonstrates that our outstanding performance is not due to its complexity.

Variants #blocks #heads #params FID↓ SSIM↑
Less blocks 3 4 37.776M 89.96 0.711
Ours 6 4 75.552M 84.72 0.872
More blocks 9 4 113.329M 85.28 0.879
Less heads 6 1 4.732M 89.17 0.738
Ours 6 4 75.552M 84.72 0.872
More heads 6 8 302.100M 81.92 0.873

CNN-based 6 - 7.081M 89.73 0.708

Table 3. Effects of the number of blocks and heads in our InstaFormer architecture, providing quantitative evaluations with FID [2]
and SSIM [8]. The only setting that vary across model is the number of Transformer blocks or heads, and we keep the others constant for
sunny→night on INIT dataset [6]. Larger models tend to have a higher parameter count, and better FID [2] and SSIM [8] metric scores.

(a) Input image (b) #blocks = 3 (c) #blocks = 6 (d) #blocks = 9

Figure 6. Visual results on variants of the number of Transformer blocks. (a) input image and translated images (b,c,d) with different
number of Transformer blocks for sunny→night.

(a) Input image with instances (b) #heads = 1 (c) #heads = 4 (d) #heads = 8

Figure 7. Visualization of learned self-attention. (from top to bottom) attention map for a car and a truc, respectively. (a) input image
and following self-attention maps (b,c,d) for different number of heads.

References
[1] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. In CVPR,

pages 8188–8197, 2020.
[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale

update rule converge to a local nash equilibrium. In NeurIPS, pages 6626–6637, 2017.
[3] Liming Jiang, Changxu Zhang, Mingyang Huang, Chunxiao Liu, Jianping Shi, and Chen Change Loy. Tsit: A simple and versatile

framework for image-to-image translation. In European Conference on Computer Vision, pages 206–222. Springer, 2020.
[4] Yahui Liu, Enver Sangineto, Yajing Chen, Linchao Bao, Haoxian Zhang, Nicu Sebe, Bruno Lepri, Wei Wang, and Marco De Nadai.

Smoothing the disentangled latent style space for unsupervised image-to-image translation. In CVPR, pages 10785–10794, 2021.
[5] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired image-to-image translation. arXiv

preprint arXiv:2007.15651, 2020.
[6] Zhiqiang Shen, Mingyang Huang, Jianping Shi, Xiangyang Xue, and Thomas S Huang. Towards instance-level image-to-image

translation. In CVPR, pages 3683–3692, 2019.
[7] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,

Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision. arXiv preprint arXiv:2105.01601, 2021.
[8] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural

similarity. TIP, 13(4):600–612, 2004.

