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A. Effectiveness of Informer
In our main paper, we evaluated our entropy model (Informer) with the encoder-decoder structure in Minnen et al. [8].

Additionally, in this supplementary material, we evaluate Informer with another encoder-decoder structure in Cheng et al. [4],
which consists of residual blocks and attention modules. For the baseline entropy model [8], we use the result values reported
in the CompressAI Github page1.

As shown in Fig. A.1, Informer shows superiority across all PSNR levels on Kodak [6] with performance gaps from
3.03% up to 5.25%. From this result, we observe that our proposed Informer effectively models remaining dependencies in
the quantized latent representation regardless of the encoder-decoder structure.
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Figure A.1. Performance of different image compression methods. Each curve means the rate savings (%) relative to BPG [3] at different
PSNR levels. Larger values mean better performance. The results of the MSE-optimized methods are averaged over Kodak [6].

1https://github.com/InterDigitalInc/CompressAI/blob/80ffc32/results/kodak/compressai-cheng2020-attn_
mse_cuda.json

https://github.com/InterDigitalInc/CompressAI/blob/80ffc32/results/kodak/compressai-cheng2020-attn_mse_cuda.json
https://github.com/InterDigitalInc/CompressAI/blob/80ffc32/results/kodak/compressai-cheng2020-attn_mse_cuda.json


B. More implementation details
We illustrate the overall diagram of the learned image compression method with Informer in Fig. B.1. In addition, archi-

tectural details of Informer are summarized in Tab. B.1.
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Figure B.1. Overall diagram of the learned image compression method with the proposed entropy model, Informer. The white blocks
are data tensors, the blue blocks are learned models, the red blocks are entropy coding, and the gray circles are quantization operations.
Informer can be combined with any transformation part (consisting of an encoder fa and a decoder fs). Informer jointly optimizes
Context Model (capturing dependencies in the previously decoded local context ŷ<i), Local Hyperprior Model (capturing inter-channel
dependencies at each spatial location), Global Hyperprior Model (capturing global dependencies across the whole image region), and
Parameter Model (predicting the distribution parameters µ and σ). By utilizing the predicted µ and σ by Informer, the quantized latent
representation ŷ is encoded into a bitstream using an entropy encoder (EC) and the bitstream is decoded by an entropy decoder (ED). In
addition to ŷ, the proposed local hyperprior ẑl and global hyperprior ẑg are also encoded using entropy coding. For this, we employ the
factorized entropy model [2], where all elements of ẑl with the same channel index are assumed to follow the same distribution and all
elements of ẑg are assumed to follow different distributions.
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Masked: 5×5 c384 s1 Conv: 1×1 c48 s1 Conv: 1×1 c98 s1 MHA: c192 h4 Conv: 1×1 c384 s1 MHA: c384 h8 Conv: 1×1 c640 s1
Leaky ReLU Leaky ReLU Linear: c768 Linear: c1536 Leaky ReLU

Conv: 1×1 c12 s1 Conv: 1×1 c384 s1 GELU GELU Conv: 1×1 c512 s1
Linear: c192 Linear: c384 Leaky ReLU

Conv: 1×1 c24 s1 Conv: 1×1 c384 s1

Table B.1. Architectural details of Informer when C = 192 and N = 8. Convolutional layers are represented by the “Conv” prefix followed
by the kernel size, number of channels and stride (e.g., the first layer of the local hyper encoder uses 1×1 kernels with 48 channels and a
stride of one). The “Masked” prefix means the masked convolutional layer as in [9]. The “MHA” prefix means the multi-head attention
blocks as in [5], followed by the number of channels and the number of heads. The “Linear” prefix means the linear layers followed by the
number of channels.



C. Rate–distortion curves
Fig. C.1 shows rate–distortion curves corresponding to Fig. 6 in the main paper. For traditional methods, we use JPEG [12],

JPEG2000 [11], and BPG [3]. For learned methods, we use those of Minnen et al. [8], Lee et al. [7], and Qian et al. [10].
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Figure C.1. Rate–distortion curves. Top: MSE-optimized models on Kodak [6]. Middle: MSE-optimized models on Tecnick [1]. Bottom:
MS-SSIM-optimized models on Kodak [6].



D. More qualitative results
Figs. D.1 to D.5 show qualitative performance comparison between our method and other traditional image codecs. As

in the main paper, for fair comparisons, we encode the images under compression settings for as similar bpp values as
possible. Overall, our methods exhibit better qualitative performance by restoring images more clearly, not reconstructing
wrong content that does not exist in the original image, and producing patterns more similar to those of the original image.

(bpp, PSNR, MS-SSIM)

Original Ours [MSE] Ours [MS-SSIM]

BPG JPEG

(0.050, 30.912, 0.942) (0.058, 28.957, 0.959)

(0.058, 30.506, 0.933) (0.154, 22.676, 0.764)

Figure D.1. Visual comparison of the decoded images by our methods and the other image codecs on “Kodim03” from Kodak [6].

(bpp, PSNR, MS-SSIM)

Original Ours [MSE] Ours [MS-SSIM]

BPG JPEG

(0.060, 29.475, 0.931) (0.064, 25.403, 0.946)

(0.062, 28.970, 0.916) (0.166, 21.740, 0.725)

Figure D.2. Visual comparison of the decoded images by our methods and the other image codecs on “Kodim15” from Kodak [6].



Original Ours [MSE] Ours [MS-SSIM] BPG JPEG

(bpp, PSNR, MS-SSIM) (0.064, 29.328, 0.904) (0.081, 27.004, 0.934) (0.075, 29.108, 0.896) (0.158, 21.205, 0.640)

Figure D.3. Visual comparison of the decoded images by our methods and the other image codecs on “Kodim04” from Kodak [6].

Original Ours [MSE] Ours [MS-SSIM] BPG JPEG

(bpp, PSNR, MS-SSIM) (0.067, 30.566, 0.956) (0.062, 27.519, 0.964) (0.071, 29.788, 0.943) (0.164, 23.324, 0.782)

Figure D.4. Visual comparison of the decoded images by our methods and the other image codecs on “Kodim09” from Kodak [6].

Original Ours [MSE] Ours [MS-SSIM] BPG JPEG

(bpp, PSNR, MS-SSIM) (0.083, 29.467, 0.933) (0.062, 26.852, 0.953) (0.089, 28.789, 0.919) (0.164, 22.955, 0.728)

Figure D.5. Visual comparison of the decoded images by our methods and the other image codecs on “Kodim17” from Kodak [6].
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