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1. Potential Negative Societal Impact

As our proposed method refines depth maps predicted

by SIDE models, we do not expect it to have any direct

negative societal impact. However, potentially, it can be

used to generate more accurate 3D reconstructions of people,

and if used in a malicious way, they could be reconstructed

accurately in an unwanted way.

2. Image Copyrights

Comparison images in Fig. 6 in the main paper and Fig. 6

are results on the Hypersim dataset (CC-BY SA 3.0 Li-

cense) [7]. Images with human subjects (identifiable and non-

identifiable) in Fig. 1, Fig. 2 and Fig. 8 in the main paper and

Fig. 1 and Fig. 7 are from unsplash [10] or pixabay [4],

which are websites with freely licensed images that can be

used for commercial and non-commercial purposes. The top

image in Fig. 7 in the main paper was officially licensed by

Adobe Stock [1] (from eranda - stock.adobe.com). Other

generic images are from internal RGB-D datasets.

3. Details of Training Data Generation

Perturbations During training, we apply random dilation

and erosion operations on the composite depth map. First, a

random number of iterations is selected from U(1, 5) each

for dilation (kd) and erosion (ke). Then, dilation or erosion

with a 3× 3 kernel is applied kd or ke times with the follow-

ing order: (i) dilation, erosion, erosion and dilation for 50%
of the time, and (ii) erosion, dilation, dilation and erosion the

rest of the time. This makes sure that most thin structures

and isolated regions are lost in the perturbed depth map. For

the Gaussian blur, 50% of the time, we use σ ∼ U(0, 1)
for small amounts of blur, and the rest of the time, we use

σ ∼ U(1, 5) for larger amounts of blur. For human hole

perturbations, holes in the mask are detected using the hi-

erarchy computed by cv2.findContours(), and for

each hole, a random value between the mean depth value

inside the original hole and the mean depth value in the outer

neighborhood of 10 pixels is assigned.

Effect of Human Hole Perturbation We compare the

refined depth results generated by a model trained without
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Figure 1. Effect of human hole perturbation. By adding random

human hole perturbations when generating the perturbed depth

maps during training, our model can correct initially wrong values

in large isolated background regions (holes) in humans.

human hole perturbations and our final model trained with
human hole perturbations (models in the last two rows in

Table 3 of the main paper). As shown in Fig. 1, the initial

depth predicts wrong values for holes (isolated background

regions) in humans. Without human hole perturbations, the

model is able to refine smaller holes (between arm and body)

but is incapable of correcting a larger hole (between the legs)

as it has not seen such challenging cases during training.

The hole perturbation scheme aims to mimic those cases by

assigning a random value. This simple strategy enables the

refinement model to correct larger holes, as shown in Fig. 1.

Cropping When cropping the mask for training, we fil-

ter out small objects by randomly picking objects that are

comprised of at least 1% of total pixels in an instance seg-

mentation map. Furthermore, we adaptively crop around the

object depending on the object size to ensure that the masked

region is sufficiently large as shown in Fig. 3. If the object

size is smaller than the training patch size (320× 320), we

randomly crop by the patch size at locations where the entire

object is inside the patch. If the object size (H×W ) is bigger

than the patch size, we crop by p × p, where p ∼ U(s, 2s)
and s is max (H,W ), at random locations where the entire

object is inside the patch. Then, the cropped patch is resized

to the training patch size so that it can be used for randomly

compositing the RGB and depth map patches. Without this

cropping scheme, the mask region often only contains parts
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Figure 2. Illustrations of baseline models used in our experiments.

Figure 3. RGB-D and mask cropping during training.

of objects or no objects at all (if simply cropped at ran-

dom locations). For stuff classes (e.g., sky), we crop with

p ∼ U(H/2, H) at a random location.

4. Details of Baseline Models
In the main paper, we compared to four baseline mod-

els that perform mask-guided depth refinement: Direct-

composite, Direct-paired, Layered-propagation and Layered-

ours. An illustration of the baselines is shown in Fig. 2.

In Fig. 2 (a), Direct-composite predicts the refined output

without layering by training on composite RGB-D inputs.

Direct-paired also refines without layering but is trained on

a paired mask and RGB-D dataset [7] as shown in Fig. 2

(b). We employ the same model architecture as the network

shown in Fig. 5 of the main paper for Direct-composite and

Direct-paired.

For Layered-propagation, we run the propagation-based

image completion algorithm [9] twice to obtain layered out-

puts, once with the dilated mask for inpainting and the sec-

ond time with the eroded mask for outpainting as shown

in Fig. 2 (c). The two outputs are then merged based on

the mask similar to our proposed 2-layer approach. For

Layered-ours, the same procedure as Fig. 2 (c) is applied

but we use our model after stage I training instead of [9]

for inpainting/outpainting. For the layered baselines, dila-

tion and erosion are necessary to correct the initially wrong

values and their kernel sizes should be set heuristically for

each input depth to get the best results, unlike our proposed

method that is able to automatically figure out the regions to

inpaint/outpaint while refining inaccurate areas without any

heuristics.

5. Analysis on Mask Quality

As our method refines the initial depth map based on

the input mask, its refinement performance is inevitably

dependent on the mask quality. To analyze the effect of

using different types of masks, in Fig. 4, we show the

refined outputs using three different masks generated us-

ing commercial masking tools: (i) automatically generated

mask from removebg, (ii) automatically generated mask

using Photoshop, and (iii) manually edited mask using

Photoshop. As shown in Fig. 4, using automatically gen-

erated masks already produces significantly enhanced results.

With additional manual editing (Fig. 4 (d)), the depth map

can be refined even further. In practical application scenar-

ios, users can edit masks instead in order to edit depth maps,

which would be easier and more intuitive.



(a) Initial Depth (d) Manual (Photoshop)(b) Automatic (remove.bg) (c) Automatic (Photoshop)

Figure 4. Ablations on automatic and manual mask inputs.
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Figure 5. Quantitative results with degraded masks.

For a numerical analysis on mask quality, we apply mor-

phological opening and closing operations with kernel sizes

k ∈ {3, 5, 7, 9} on the ground truth instance segmentation

maps from Hypersim [7] and measure the MBE and RMSE

after refining the depth maps generated with DPT-Large [5].

The results are plotted in Fig. 5, where k = 0 denotes the

case using the original ground truth segmentation maps and

the dotted lines signify the average metric values of the ini-

tial depth maps. As shown in Fig. 5, the error values increase

with more severe degradation as expected. However, they

are still better than the initial depth.

6. Inference Time
For inference, it takes 16 ms for the initial depth predic-

tion [5,6] and an additional 78 ms for our refinement method

with an NVIDIA TITAN RTX GPU. Note that input images

are resized to the spatial resolution used during training prior

to entering the network for all methods, 384× 384 for [5, 6]

and 320× 320 for ours.

7. More Visual Results
More results on paired datasets In Fig. 6, we provide

more examples on Hypersim [7] along with the relative im-

provement maps visualizing where the refinement method

improved and worsened the initial depth estimation in terms

of absolute error. Miangoleh et al.’s method [2] often wors-

ens homogeneous regions whereas our method mostly re-

fines along the mask boundaries (edges and holes) and leaves

other regions intact.

More results using point clouds In Fig. 7, we visualize

the frontal, side and top views of the scene using point cloud

representations. With our refined depth, objects are more

clearly and accurately cut around the edges and hole regions,

resulting in significantly less flying pixels. This can poten-

tially benefit applications such as 3D photography [3, 8].

More results in the wild We provide additional re-

sults on real images as image files as part of the sup-

plementary material. We further provide an html file,

comparisons.html, for easier visual comparisons

among the initial depth [5], Miangoleh et al.’s refinement

method [2] and Ours.
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Figure 6. Qualitative results on Hypersim [7]. The relative improvement maps visualize where the refinement method improved and

worsened the initial depth estimation by DPT [5]. Our method focuses on the edges and hole regions, accurately refining fine structures.



Figure 7. Point cloud visualizations using the initial depth by DPT [5] and refined depth by Ours. With the refined depth, there are less flying

pixels and objects are more clearly cut in the frontal, side and top views of the scene.
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