A. Appendix

In this Appendix, we provide i) extended quantitative
analysis of MSTR capturing HOI detection in a multi-scale
environment, ii) exploration for various possible decoder ar-
chitectures, iii) implementation details of MSTR, iv) de-
tails on experimental datasets and metrics, v) details of
training, vi) analysis on convergence speed, vii) additional
qualitative result on our Dual-Entity attention and Entity-
conditioned Context attention, and finally, viii) limitations
of our work.

A.l. Additional Quantitative Results for MSTR

First, we perform an extended quantitative analysis on
the HICO-DET test set to validate the effectiveness of
MSTR in a multi-scale environment. MSTR uses multi-
scale feature maps to explore the semantics of HOI exist-
ing in different scales. In this section, we provide extensive
quantitative results that shows the effectiveness of MSTR
in capturing the interactions between humans and objects
not only at different scales, but in various distances also
(e.g., adjacent interaction such as ‘holding a book’ or re-
mote interaction such as ‘throwing a frisbee’). To this end,
we show quantitative results for multi-scale interactions ac-
cording to 1) relative area of the human and the object, 2)
the size of humans/objects, 3) distance between the human
and object. For each criterion, we measure the performance
across three bins where each bin has an equal and suffi-
cient amount of HOI ground-truth labels to cover (~11,000
HOIs). For comparison, we set QPIC [7], the state-of-the-
art transformer-based approach that uses a single-scale fea-
ture map, as our baseline. Note that in this appendix, the
size, area, and distance are all calculated in normalized im-
age coordinates.

Relative area of human vs. object. To observe how
MSTR handles interaction between humans and objects
with different scales, we first calculate the average precision
(AP) over interaction labels that have different relative ar-
eas of humans and objects (zzgggggg) We cover three main
cases according to their relative areas: i) APy, where the
object area is significantly larger than the human area (e.g.,
human sitting on a bench), ii) AP,—, where the human and
the object exists in comparable sizes, and iii) AP~ , where
the object area is significantly smaller than the human area
(e.g., human throwing a ball). We set the threshold for
the relative areas so that each bin has an equal number of

ground-truth instances (i.e., Zizgggggg < 0.48 for AP, ., and

aeatiod > 4.33 for APys,). In Table 1, MSTR outper-
forms QPIC in all three types of interaction categories. Note
that the improvement is more substantial in cases where the
human and object have vastly different scales (+3.01p for

AP, and +1.85p for APy ,), verifying that MSTR is ef-

Method APp<o APp—o APp>,
QPIC 34.10 30.57 25.22
MSTR 37.11 31.68 27.07
AAP +3.01 +1.11 +1.85

Table 1. Comparison of MSTR with QPIC under interactions with
different human/object scale ratio.

fectively utilizing multi-scale feature maps.

Human & object size. Here, we compare the average pre-
cision over the sizes of humans and objects. AP, APy,
APg each denotes the average precision for Large, Middle,
and Small humans and objects. In Table 2, MSTR outper-
forms QPIC in all three categories in both human and ob-
ject scales. For the human scales, the improvement is more
recognizable in interactions including small human areas
(+3.06p in APg) while for object scales, the improvement
is consistent over all three scales.

Human Size Object Size
Method  APL APy APg AP APy APg

QPIC 28.65 3536 24.14 33.09 28.65 24.87
MSTR  30.04 37.02 27.20 34.87 3048 26.60
AAP +1.39 +1.66 +3.06 +1.78 +1.83 +1.73

Table 2. Comparison of MSTR with QPIC under different sizes of
humans and objects.

Interactions in various distances. Not only does MSTR
capture interactions with various sized participants, but
MSTR also captures interactions with various sized con-
texts, i.e., interaction in various distances. To correctly
measure how remote an interaction is, we note that the
distance between center points [7] should be normalized
by both the image size and the size of the human and
object box participating in the interaction. Given the
interaction between hbox (hxq, hyi, hze, hys) and obox
(ox1, 0y1, 012, 0Y2), the normalized box area as area (hbox)
and area (obox), we define the distance djneraction aS

— hxzy+h + 2 hyi+h T 5
dcenter —\/( 1 12—”12"’:2) +( vt y2_0y120y2) ,

dinteraction = dcenter / (area(hbox) . area(obox)).

6]

Then, we measure the average precision over three cate-
gories: 1) AP,gjacent Where the human is interacting with
a nearby object, ii) APgisane Where the interacting hu-
man/object is within moderate distance, and APepore Where
the human is interacting with an object sufficiently far away.
As in previous sections, we set the distance threshold so that



Method APadjacenl APdistam APremole
QPIC 31.09 31.25 21.81
MSTR 32.66 33.48 23.70
AAP +1.57 +2.23 +1.89

Table 3. Comparison of MSTR with QPIC under interactions with
various distances.

each bin has an equal number of ground-truth instances. Ta-
ble 3 shows the improvement of MSTR over QPIC. Note
that while MSTR shows improvement across all three cat-
egories, the improvement is more distinguishable in cases
where humans are interacting with objects in considerable
distance (+2.23p for APgisane and +1.89p for APremote, Te-
spectively).

A.2. Analysis on Decoder Architecture

As MSTR considers multiple semantics with two sug-
gested deformable modules (Dual-Entity attention and
Entity-conditioned Context attention), it is important to find
a suitable decoder architecture that effectively merges the
semantics. Here, we explore the possible combinations
and various types of decoder architecture candidates when
merging the three kinds of semantics. We empirically ver-
ify that MSTR architecture shows the most powerful perfor-
mance.

Architecture for Dual-Entity attention. In Figure 1, we
explore different architectures for Dual-Entity attention. We
start with the most basic form: (a) is the architecture of
QPIC, and (b) shows a straightforward application of the
deformable attention [9] to QPIC. However, as we dis-
cussed in our main paper, (b) degrades the performance a
lot from (a), because unlike its counterpart in object detec-
tion, multiple localizations need to be entangled to a single
reference point in architecture (b). Therefore, we first use
Dual-Entity attention to disentangle sampling points and at-
tention weights for the participating entities (i.e., human
and object), respectively, to improve HOI detection perfor-
mance. In Figure 1, (c) and (d) shows two options of deal-
ing with the dual semantics obtained from dual reference
points (each for humans and objects). In (c), each refer-
ence point is dealt with a separate stack of decoder layers
(i.e., Double-stream), while in (d) they are handled within a
single-stream by sharing the self-attention layer where the
input is simply the sum of the multiple semantics from the
previous decoder layer. In Table 6, we show that our Dual-
Entity attention shows a valid improvement (see (d) vs. (b)),
while it even shows better performance than (c) requiring
twice the number of decoder parameters.
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Figure 1. Comparison of a simple 2-layer Decoder architecture
for: (a) QPIC, and (b) Direct application of Deformable DETR
on QPIC, (c) Dual-Entity attention with two streams of decoder
layers and (d) Dual-Entity attention that shares the self-attention
layer.

Method ‘ Default (Full)
(a) QPIC 29.07
(b) QPIC + Deformable attention [9] 27.52
(c) Double-stream 28.15
(d) Dual-Entity attention 28.30

Table 4. Comparison of Dual-Entity attention performance (d)
against architecture in Figure 1 (a-c).

Modeling Conditional Context attention. In HOI detec-
tion, contextual information often gives an important clue in
identifying interactions. In Table 5, we study the two differ-
ent methods of obtaining context attention using (a) stan-
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Figure 2. Comparison of: (a) context sampling with deformable
attention, and (b) Entity-conditioned Context attention.

dard deformable attention and (b) our Entity-conditioned
Context attention; note that in standard deformable atten-
tion, context reference points are directly obtained from
HOI queries with a linear projection while our method con-
ditionally obtain it from human and object reference points
(see Figure 2). It can be observed that despite its simple
structure and minimal delay, our Entity-conditioned Con-
text attention achieves an +0.78p improvement compared to
its counterpart. This implies that the guidance by human
and object points is important to effectively model contex-
tual information.

Method | Default (Full)
(a) Standard Deformable attention 29.36
(b) Entity-conditioned Context attention 30.14

Table 5. Comparison of the performance of Entity-conditioned
Context attention against standard deformable attention [9]. Both
(a) and (b) leverage Dual-Entity attention and follow the architec-
tural design of Figure 3 (a) for fair comparison.

Merging the semantics. Figure 3 shows two different
ways of how to merge the three semantics obtained from our
Dual-Entity attention and Entity-conditioned Context atten-
tion. In MSTR, we merge the multiple semantics after ap-
plying self-attention separately to each of the semantic fea-
tures obtained in the previous layer (Figure 3 (b)) instead of
forcedly composing the input features of the self-attention
layer (Figure 3 (a)). Table 6 shows that MSTR architec-
ture (b) outperforms (a) by a margin of +1.03p, achieving
the final performance. Note that while (b) is better, MSTR
outperforms competing algorithms (presented in Table 2 of
main paper) even with architecture (a).

Method | Default (Full)
(a) Merge self-attention input 30.14
(b) Merge self-attention output 31.17

Table 6. Comparison of a simple 2-layer Decoder architecture for
Transformer-based HOI detectors: (a) Merging the input of the
self-attention, and (b) architecture of MSTR (merging the output
of self-attention).
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Figure 3. Comparison of a simple 2-layer Decoder architecture
for Transformer-based HOI detectors: (a) Merging the input of the
self-attention, and (b) architecture of MSTR (merging the output
of self-attention).

A.3. Implementation Details

Following implementation details in Deformable
DETR [9], we use ImageNet pre-trained ResNet-50 [5] as
our backbone CNN and extract multi-scale feature maps
without FPN. The number of attention heads and sampling
offsets for deformable attentions are set to M = 8 and
K = 4, respectively. The AdamW optimizer is used
with the initial learning rate of 2e-4 and weight decay of
le-4. All transformer weights are initialized with weights
pre-trained in MS-COCO. For a fair comparison with
QPIC [7], we use only 100 HOI queries instead of using
300 ones as in Deformable DETR [9].

A.4. Details on Datasets and Metrics

We evaluate our model on two widely-used public
benchmarks: the V-COCO (Verbs in COCO) [4] and HICO-
DET [2] datasets. V-COCO is a subset of COCO com-
posed of 5,400 trainval images and 4,946 test images. For
V-COCO dataset, we report the AP, over 25 interactions
in two scenarios. In Scenario 1 (denoted as APfoﬁli), detec-
tors should predict an output indicating the non-existence
of an object ([0,0,0,0]) when the target object is occluded,
while in Scenario 2 (denoted as APZﬁ), only the localiza-
tion of human and interaction classification is scored for
such cases. HICO-DET contains 37,536 and 9,515 images
for each training and test splits with annotations for 600
(verb, object) interaction types. In HICO-DET dataset,
there are two different evaluation settings: Default and
Known object. The former measures AP on all the test im-
ages, while the latter only considers the images with the

object class corresponding to each AP. We report our score



with both settings. Note that the Default is a more challeng-
ing setting as we also need to distinguish background im-
ages. We follow the previous settings and report the mAP
over three different category sets: (1) all 600 HOI categories
in HICO (Full), (2) 138 HOI categories with less than 10
training instances (Rare), and (3) 462 HOI categories with
10 or more training instances (Non-Rare).

A.5. Training Details of MSTR

In this section, we explain the details of MSTR train-
ing. MSTR follows a set prediction approach as in previous
transformer-based HOI detectors [3, 6,7, 10]. We first in-
troduce the cost matrix of Hungarian Matching for unique
matching between the ground-truth HOI triplets and HOI
set predictions.

Hungarian Matching for HOI Detection. MSTR pre-
dicts a fixed number K of HOI triplets that consist of
a human box, object box, and binary classification for
the a types of actions (where a=25 in V-COCO and
117 for HICO-DET). Each prediction captures a unique
(human,object) pair with multiple interactions. K is set to
be larger than the typical number of interacting pairs in an
image (in our experiment, X' = 100). Let ) denote the
set of ground truth HOI triplets and ) = {5j;} X, as the
set of K predictions. As K is larger than the number of
unique interacting pairs in the image, we consider ) also as
a set of size K padded with & (there are no ground-truth
that matches the prediction). Let y = (b",b°,¢°, a) where
the ground-truth interaction y; consists of b and b which
denotes the normalized coordinates for the interacting hu-
man/object box, ¢{ denotes the target object class. and a;
denotes the one-hot for multiple actions. To find a bipartite
matching between these two sets we search for a permuta-
tion of K elements o € G with the lowest cost:

K
0 = argmin Z Cmalch(yia ?jo’(i))a 2

ceG K i
where Cuaen 1S @ pair-wise matching cost between ground
truth y; and a prediction with index o (). Now, the ground-
truth is written as y; = (b2, b2, c?, a;) and the prediction is
written as §,(;) = (bg(i),bg(i),ég(i),&g(i)) where §,(;) is
the prediction that has the minimal matching cost with y;.
lA)Z () and l;g( ;) are the normalized box coordinates for hu-
mans and objects, respectively, &2 ) is the classification for
the target object of the interaction, and G, ;) is the predicted

actions.

Final Cost/Loss function for MSTR. Based on Ciach,
we calculate the final loss function for all pairs matched.
The cost/loss function for the HOI triplets consists of the
localization loss, object classification loss, and the action
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29.07
27.89

25 4 2475

10 A —— MSTR
QPIC
25 50 75 100 125 150
Epochs

Figure 4. Comparison of convergence curves of QPIC and MSTR
in the HICO-DET dataset. MSTR shows faster convergence than
QPIC under various training schedules for both methods.

classification loss as Ly = Lioc + Leis + Lace Where each
function is written as

K
Lioe = Z [ﬁloc(bzhv bg(z)) + Lloc(bga bg(i))}a
i=1
K
Las =Y BCELoss(ci, éo(i)), 3)
i=1

K
Lot = ZBCELoss(ai, Ao (i)

i=1

Identical to previous works [ 1, 3,6,7,9, 10], the localization
loss is defined by the weighted sum of the L1-loss and the
gloU loss.

A.6. Convergence speed

One of the advantages that deformable attention provides
is the fast convergence at training. Figure 4 shows the con-
vergence curve of MSTR compared to QPIC. Specifically,
MSTR requires a much short number of epochs (50 epochs)
compared to QPIC (150 epochs) to reach its best score.
Note that MSTR achieves a competitive score to QPIC only
with 20 epochs, outperforming QPIC with approximately
x4 shorter training time.

A.7. Qualitative Analysis for MSTR

In this section, we conduct extensive qualitative analy-
sis of MSTR to observe how Dual-Entity attention and the
Entity-conditioned Context attention capture different se-
mantics for interactions in a multi-scale environment.

MSTR attentions on multi-scale feature maps. We con-
duct a qualitative analysis of MSTR on both Dual-Entity at-
tention and the Entity-conditioned Context attention in HOI
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Figure 5. Visualization of the attention for the Dual-Entity attention and Entity-conditioned Context attention of MSTR in multi-scale
feature maps for adjacent interaction: ride.
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Figure 6. Visualization of the attention for the Dual-Entity attention and Entity-conditioned Context attention of MSTR in multi-scale
feature maps for remote interaction: fly. It can be seen that in both adjacent interaction and remote interaction, MSTR successfully
captures the multiple semantics of the human, object, and contextual information across the multi-resolution feature maps.



Figure 7. MSTR attentions (Dual-Entity attention and Entity-
conditioned Context attention) of different scales all visualized at
once.

detection to observe how MSTR captures interactions. Fig-
ure 5 shows the visualization of each attention in an adja-
cent interaction: ride. Figure 6 shows the visualization of
each attention in an remote interaction: fly. For both cases,
we can see that the Dual-Entity attention captures the ap-
pearance of the human and object across multiple scales of
feature maps. In contrast, the Entity-conditioned Context
attention tends to capture an inclusive area that covers both
two regions and their intermediate background, effectively
capturing the context of the interaction.

MSTR attentions on multi-scale feature maps. In Fig-
ure 7, we provide more qualitative visualizations for the
multi-scale attentions of MSTR in various scenes with 1)
large human and small object, 2) small human and large ob-
ject, 3) distant interactions, 4) adjacent interactions.

A.8. Limitations

The main limitation of our work is the bottleneck caused
by the extensive size of the query element (multi-scale im-
age features, there are about x20 more image tokens to
process compared to the single-scale feature map). Despite
our proposed deformable attentions, MSTR suffers from an
estimated 10% increase in parameters and ~ x2 GFLOPs
compared to the single-scale baseline, QPIC [7]. Although
recent related works have tackled the efficiency problem
in deformable attentions by sampling the query element as
well [8], the research scope of this work did not cover this
issue.
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