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A. Proof of Proposition 1
Proof. For a given exponential family of probability distri-
butions:

p(y|µ) = p0(y) exp
(
µ⊤T (y)−A(µ)

)
, (1)

Tweedie’s formula [2] shows that the posterior estimate
of the canonical parameter µ̂ should satisfy the following
equation:

µ̂⊤T ′(y) = −l′0(y) + l′(y) (2)

where l′(y) := ∇y log p(y) and l′0(y) := ∇y log p0(y) are
score functions, and T ′(y) = ∇yT (y) [3].

Now, our goal is to use this formula to the saddle point
approximation of Tweedie distribution [1] given by:

p(y;µ, ϕ) = (2πϕyρ)−
1
2 exp

(
−d(y, µ)

2ϕ

)
(3)

where

d(y, µ) = 2

(
y2−ρ

(1− ρ)(2− ρ)
− yµ1−ρ

1− ρ
+

µ2−ρ

2− ρ

)
. (4)

By inspection of (1) and (3), we have

p0(y) = (2πϕyρ)−
1
2

µ⊤T (y)−A(µ) =
−d(y, µ̂)

2ϕ
(5)

Furthermore, we have

∂d(y, µ)

∂y
=

2

1− ρ
y1−ρ − 2

1− ρ
µ1−ρ

∂ log(2πϕyρ)−
1
2

∂y
= − ρ

2y

Accordingly,

µ̂⊤T ′(y) = − 1

ϕ(1− ρ)
(y1−ρ − µ̂1−ρ)

=
ρ

2y
+ l′(y)

which leads to

µ̂1−ρ = y1−ρ + ϕ(1− ρ)

(
ρ

2y
+ l′(y)

)
. (6)

Therefore, we have

µ̂ = exp

{
1

1− ρ
log

(
y1−ρ + ϕ(1− ρ)

(
ρ

2y
+ l′(y)

))}
= y (1 + (1− ρ)α(y, ρ, ϕ))

1
1−ρ (7)

where

α(y, ρ, ϕ) = ϕyρ−1

(
ρ

2y
+ l′(y)

)
. (8)

This concludes the proof.

B. Proof of Proposition 2
Proof:

Additive Gaussian noise. In this case, we have ρ =
0, ϕ = σ2 for Tweedie distribution. Accordingly, (8) can
be simplified as

α(y, 0, ϕ) = σ2y−1l′(y) (9)

Therefore, using (7), we have

µ̂ = y(1 + σ2y−1l′(y)) = y + σ2l′(y).

Poisson noise. In this case, we have ρ = 1, ϕ = ζ for
Tweedie distribution. In this case, we have

lim
ρ→1

(1 + (1− ρ)α(y, ρ, ϕ))
1

1−ρ

= exp

[
lim
ρ→1

log(1 + (1− ρ)α(y, ρ, ϕ))

1− ρ

]
= exp

[
lim
ρ→1

α(y, ρ, ϕ)

1 + (1− ρ)α(y, ρ, ϕ)

]
= exp[α(y, 1, ϕ)]. (10)
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where the second equality comes from the L’Hospital’s rule,
and

α(y, 1, ϕ) = ζ

(
1

2y
+ l′(y)

)
(11)

Therefore, we have

µ̂ = y exp

[
ζ

(
1

2y
+ l′(y)

)]
= y exp(

ζ

2y
) exp(ζl′(y))

≈ (y +
ζ

2
) exp(ζl′(y)),

where the last approximation comes from exp(x) ≈ 1 + x
for a small x.

Gamma noise. In this case, we have ρ = 2, ϕ = 1/k for
Tweedie distribution. Using (8), we have

α(y, 2, k) =
1

k
y

(
1

y
+ l′(y)

)
=

1

k
(1 + yl′(y)) (12)

Therefore, we have

µ̂ = y

(
1− 1

k
(1 + yl′(y))

)−1

=
ky

(k − 1)− yl′(y))

This concludes the proof.

C. Proof of Proposition 3
Proof. Let y2 = y1 + ϵu for u ∼ N (0, 1). Then, we have

α(y1, ρ, ϕ) = ϕyρ−1
1

(
ρ

2y1
+ l′(y1)

)
(13)

α(y2, ρ, ϕ) = ϕyρ−1
2

(
ρ

2y2
+ l′(y2)

)
(14)

For a sufficiently small perturbation ϵ, we can assume that

α(y1, ρ, ϕ) = α(y1, ρ, ϕ)

Accordingly, by dividing (14) by (13), we have

1 =

(
y2
y1

)ρ−1
(

ρ
2y2

+ l′(y2)
ρ

2y1
+ l′(y1)

)

By taking logarithm on both sides, we have

(ρ− 2) log

(
y2
y1

)
+ log

(
ρ+ 2y2l

′(y2)

ρ+ 2y1l′(y1)

)
= 0 (15)

Furthermore, by denoting w := 2y2l
′(y2) − 2y1l

′(y1), we
have

log

(
ρ+ 2y2l

′(y2)

ρ+ 2y1l′(y1)

)
= log

(
1 +

w

ρ+ 2y1l′(y1)

)
≈ w

p+ 2y1l′(y1)
(16)

when w
ρ+2y1l′(y1)

→ 0. By plugging (16) into (15), we can
obtain the quadratic equation for ρ:

0 = (ρ− 2) log

(
y2
y1

)
+

2y2l
′(y2)− 2y1l

′(y1)

ρ+ 2y1l′(y1)

By denoting a = log(y2

y1
), b = 2y1l

′(y1), we have

0 = a(ρ− 2) +
w

ρ+ b
,

= a(ρ− 2)(ρ+ b) + w. (17)

Therefore, the estimated noise model parameter ρ̂ can be
obtained as the solutions for the quadratic equation, which
is given by:

ρ̂ =
−a(b− 2)±

√
(a(b− 2)2 − 4a(−2ab+ w)

2a

D. Proof of Proposition 4
Proof. Let y2 = y1 + ϵu for u ∼ N (0, 1), and the noise
model parameter ρ is known. Suppose furthermore that ϵ
is non-zero but sufficiently small that the following equality
holds:

E[µ|y1] = E[µ|y2] (18)

Now, we derive the formula for each distribution.

Additive Gaussian noise For the case of additive Gaus-
sian noise, we have

x̂1 = E[µ|y1] = y1 + σ2l′(y1) (19)

x̂2 = E[µ|y2] = y2 + σ2l′(y2) (20)

By subtracting (19) from (20), we have

−ϵu = σ2(l′(y2)− l′(y1)) (21)

Thus, we have the following estimate:

σ̂2 =
−ϵu

l′(y2)− l′(y1)



Poisson noise In this case, we have

x̂1 =

(
y1 +

ζ

2

)
exp(ζl′(y1)) (22)

x̂2 =

(
y2 +

ζ

2

)
exp(ζl′(y2)), (23)

By taking the logarithm of both equations and subtracting
(22) from (23), we have

0 = log

(
1 +

ϵu

y1 + ζ/2

)
+ ζ(l′(y2)− l′(y1))

≈
(

ϵu

y1 + ζ/2

)
+ ζ(l′(y2)− l′(y1)),

where the last approximation comes from x ≈ log(1+x) for
sufficiently small x. This leads to the follwoing quadratic
equation for ζ:

0 = ϵu+ ζ(y1 + ζ/2)(l′(y2)− l′(y1)). (24)

Solving quadratic equation (24), we can obtain the follow-
ing estimate:

ζ̂ = y1 +
√
y21 − 2c

where c = ϵu/ (l′(y2)− l′(y1)).

Gamma noise For the case of Gamma noise,

x̂1 =
ky1

k − 1− y1l′(y1)
(25)

x̂2 =
ky2

k − 1− y2l′(y2)
(26)

By taking the inverse of both equations and subtracting (25)
from (26), we have

1

y2
− 1

y1
=

1

k

(
1

y2
− 1

y1
+ l′(y2)− l′(y1)

)
.

Then, we can obtain k̂ by

k̂ = 1 +
l′(y2)− l′(y1)

1
y2
− 1

y1

E. Pseudocode Description
Algorithm 1 details the overall pipeline of the training

procedure for the proposed method. First, the neural net-
work RΘ was trained by minimizing ℓAR−DAE(Θ) to learn
the estimation of the score function from the noisy input y.

In the training, noisy images are sampled from an unknown
noise model corrupted with various noise levels. This neu-
ral network training step is universally applied regardless of
noise distribution. In particular, we annealed σa from σmax

a

to σmin
a to stably train the network as suggested in [6]. Now

let Θ′ be an independent copy of the parameters and after
the nth training iteration, and we update the Θ′ with the
exponential moving average as indicated in Algorithm 1 as
suggested in [6].

The inference of the proposed method is described in Al-
gorithm 2. After we obtain the trained score models R∗

Θ′ ,
we firstly estimate the noise model parameter ρ̂ with Equa-
tion (10) in the main paper using Proposition 3. Once the
noise model is determined, we estimate the noise level pa-
rameter for the estimated noise model using Proposition 4.
Then, the final clean image is reconstructed by Tweedie’s
formula as indicated in Table 2 in the main paper.

Algorithm 1: Training procedure of the proposed
method

Given: learning rates γ, number of epochs N ;
Input : noisy input y from training data set Dϕ

and noise level parameter ϕ ∈ (σ, ζ, k),
neural network RΘ, independent copy of
the parameter Θ′, annealing sigma set
Sσa with size of T ,
Sσa = [σmin

a , ..., σmax
a ], decay rate of

exponential moving average m
1 for n = 1 to N do
2 u ∼ N (0, 1);
3 t ∼ U(0, T );
4 σa → St

σa

5 ℓAR−DAE(Θ) =
E

y∼PY

u∼N (0,I),σa∼N (0,δ2)

∥u+ σaRΘ(y + σau)∥2;

6 Θ← Θ− γ∇ΘℓAR−DAE(Θ);
Θ′ ← mΘ′ − (1−m)Θ;

Output: Trained the score model, R∗
Θ′(y) = l̂′(y)

F. Implementation Details

Training details To robustly train the proposed method,
we randomly injected the perturbed noise into a noisy image
instead of using linear scheduling as in [3]. In the case of
the Gaussian and Gamma noise, σmax

a and σmin
a are set to

[0.1,0.001], respectively. For the Poisson noise case, σmax
a

and σmin
a was set to [0.1,0.02], respectively.

Noise model estimation In order to satisfy the assump-
tion in (16), we only calculate the pixel values that satisfies



Algorithm 2: Inference procedure of the proposed
method

Given: Trained score model R∗
Θ′ , the perturbed

noise level ϵ;
Input : noisy input y1 from training data set Dϕ

and noise level parameter ϕ ∈ (σ, ζ, k),
and generated perturbed noisy image
y2 = y1 + ϵµ, µ ∼ N (0, I) ;

Noise model estiamtion: ρ̂ by Equation (10) in the
main paper

Noise level estiamtion:
1 if 0 ≤ ρ̂ < 0.9→ y ∈ Gaussian noise then

σ̂2 = median
(

−ϵu
l′(y2)−l′(y1)

)
;

Output : x̂ = y + σ̂2l′(y1)
2 else if 0.9 ≤ ρ̂ < 1.9→ y ∈ Poisson noise then

ζ̂ = median
(
−y1 +

√
y21 − 2c

)
;

Output : x̂ =
(
y + ζ̂

2

)
expζ̂l

′(y)

3 else if 1.9 ≤ ρ̂ < 2.9→ y ∈ Gamma noise then

k̂ = median
(
1 + l′(y2)−l′(y1)

1
y2

− 1
y1

)
;

Output : x̂ = k̂y

(k̂−1)−yl′(y)

the following condition:

idx = −ϵ < w

ρ+ b
< ϵ (27)

where ϵ was set to 1×10−5 for all of the cases. In the proce-
dure of calculating (27), we can not access ρ̂ value. Hence,
based on assumption ρ ∈ (0, 2), we empirically determine
this value. In the case of additive Gaussian noise, this value
is set to 2.5, otherwise to 2.2. We provide the implementa-
tion code based on Pytorch [5] as shown in Listing 1.

Listing 1. Source code of the proposed noise model esimation

1 def noise_model_estimation(y_1,score_model):
2 # Inject noise into noisy images y_1
3 epsilon = 1e-5
4 n = torch.randn(y_1.shape)
5 noise = epsilon * n
6 y_2 = y_1 + noise
7 # esimate the score functions
8 l(y_1) = score_model(y_1)
9 l(y_2) = score_model(y_2)

10 # calculate each coefficient
11 w = 2*(y_2*l(y_2) - y_1*l(y_1))
12 a = torch.log(y_2/y_1)
13 b = (2*y_1*l(y_1))
14 # take only values under condition
15 ww = w/(b+2.2)
16 idx = (ww <= 1e-5) & (ww >= -1e-5)
17 w = w[idx]

18 b = b[idx]
19 w = torch.nanmean(w)
20 b = torch.nanmean(b)
21 # Solve quadratic equation
22 first = a*(b-2)
23 second = 4*a*(- 2*a*b + w)
24 sqrt = (first)**2 - second
25 sqrt = torch.sqrt(sqrt)
26 p1 = (-first + sqrt)/(2*a)
27 p2 = (-first - sqrt)/(2*a)
28 p1 = torch.nanmean(p1)
29 p2 = torch.nanmean(p2)
30 # take maximum of two values
31 p = max(p1,p2)
32 # take maximum of p and 0
33 p = max(p,0)
34 return p

Noise level estiamtion To use Proposition 4, we assume
that the injected small noise is sufficiently small, the equal-
ity in (18) holds. To achieve this, we set ϵ to 1× 10−5 for
all noise cases.

G. Analysis for Noise Model Estimation
Table 1 shows the accuracy of the estimated noise model

in the Kodak dataset. If the estimated noise distributions
are equal to the truth noise distributions, we determine that
the estimate is correct. We found that the proposed noise
model estimation reach 100% accuracy for all cases. Thus,
we concluded that we can successfully estimate the noise
model with the proposed method.

Table 1. Accuracy of the proposed noise model estimation in the
Kodak dataset.

Noise type Noise level Accuracy(%)

Gaussian
σ = 25 100
σ = 50 100

Poisson
ζ = 0.01 100
ζ = 0.05 100

Gamma
k = 100 100
k = 50 100

H. Analysis for Noise Level Estimation
Fig. 1 shows the bar graph of estimated noise level pa-

rameters for each noise distribution in the Kodak dataset.
Similar to the ablation study in the main paper, we carried
out the analysis by fixing the noise model estimation and
by only varying the estimation of noise level. From the ab-
lation study in the main paper, we expect that the quality
penalty metrics method in [3] estimates correctly in the case
of additive Gaussian noise, but incorrectly for the case of
other noise distributions. We can observe the similar find-
ings in Figure 1. On the other hand, the proposed noise level
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Figure 1. Estimated noise level parameters for each noise distribu-
tion in Kodak dataset. (a) Gaussian (σ =25, and 50). (b) Poisson
(ζ = 0.01, and 0.05). (c) Gamma (k= 100, 50). The blue bars indi-
cate the truth noise levels. The green bars and the red bars indicate
that the average of estimated noise levels with the quality penalty
metric in [3] and the proposed method, respectively.

estimation provides more accurate results compared to the
quality penalty metrics in [3] with a small standard devia-
tion. Thus, we can conclude that the proposed noise level
estimation can successfully estimate the truth noise level in
all noise distribution cases.

I. Ablation Study on Score Estimation

We demonstrate the effectiveness of each component in
improving the score model. Table 2 compares the PSNR
values of the results with and without each component on
CBSD68 dataset (Poisson noise ζ = 0.01). EMA and GS
denote Exponential Moving Average and Geometric Se-
quence, respectively. To fairly compare each case, we per-
formed the ablation study using the same procedure. From
the table, we observe the performance degradation when
any component of the proposed method is absent. There-
fore, we can conclude that EMA and GS in the proposed
method are essential for improving the score model in the
training procedure of the network.

Table 2. Ablation studies on score estimation using CBSD68 data
(Poisson noise cases, ζ = 0.01).

Component Ours Case1 Case2 Case3

EMA ✓ ✓ ✗ ✗

GS ✓ ✗ ✓ ✗

PSNR(dB) 32.53 32.41 32.23 32.03

J. Additional Experiment on Mixed Poisson-
Gaussian Noise Case

To show the effectiveness of the proposed method for
the case of mixed noise, we carried out the experiments on
Set12 dataset in case of mixed Poisson-Gaussian noise as
shown in Table 3. We confirm that our method outperforms
the other methods in mixed noise case. We observed that
when the Poisson componets are dominating, the input can
be interpreted as Poisson noise whereas the slightly overes-
timated noisy level parameter (ζ̂ from 0.01 to 0.013) com-
pensate for the Gaussian part.

Table 3. The quantitative results using the various methods in
terms of PSNR(dB) for the case of mixed Poisson-Gaussian noise
on the Set12 dataset.

Dataset Noise type N2V N2S Laine Nei2Nei Ours Supervised

Set12 (ζ,σ) = (0.01,5) 28.44 29.78 31.43 31.33 31.46 31.59
(ζ,σ) = (0.01,15) 28.12 29.26 30.53 30.35 30.58 30.98

K. Ablation Study on Hyperparameter of
Noise Model Estimation

In this section, we analyzed the sensitivity with respect to
the noise model estimation. In estimating the noise model,
we determined the specific noise type when the noise model
parameter, ρ̂, belong to a certain range that is associated
with the hyperparameter. For the analysis of hyperparame-
ter of noise model estimation, we carried out experimentes
in which the rules of the range that determine the noise
model are varied in Kodak dataset. As shown in Table 4,
narrower selection bins reduce the accuracy, and we thus
chose the best range empirically.

L. Ablation Study on Hyperparameter of Noise
Level Estimation

We also analyzed the sensitivity of hyperparameter of
noise level estimation, ϵ, in Propoisition 4. In the Propo-
sition 4, we assume that the injected small noise, ϵ is suf-
ficiently small, the equality in (18) holds. For the anlaysis
of the acceptable noise level for ϵ, we carried out the ex-
periments in which the indepdent noise level ϵ was varied



Table 4. The ablation studies of noise model parameter, ρ, by
varing the rule of the range.

Noise type Start point End point of range

Gaussian
0 ∼ 0.9 0.7 0.5 0.3

σ = 25 100% 95.83% 79.16% 66.66%

Poisson
0.9 ∼ 1.9 1.7 1.5 1.3

ζ = 0.01 100% 100% 100% 75%

Gamma
1.9 ∼ 2.9 2.7 2.5 2.3

k = 25 100% 100% 79.16% 16.66%

Figure 2. The analysis on hyperparameter for noise level estima-
tion.

for the case of Gaussian (σ = 25) in CBSD68 dataset. We
fixed the other experiment setting and only varied the noise
level ϵ in the noise level estimation procedure. As shown
in Fig. 2, we found that the range [1× 10−1,1× 10−6] is
acceptable.

M. Qualitative Results
We provide more examples of the denoising results by

various methods on the AAPM CT dataset [4] as shown
in Fig. 3. Similar to the results shown in the main pa-
per, the improvements are consistent. In particular, other
self-supervised approaches produce over-smooth denoised
images, which produces the boundary structure of CT im-
ages in difference images. On the other hand, the proposed
method provides similar results compared to target images
and only generates noise components in the difference im-
ages.

N. Negative Societal Impacts
As a negative societal impact, the failure of image de-

noising methods can lead to side effects. For example, re-
moving both the noise and the texture of the medical images
could lead to misdiagnosis.
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Figure 3. Denoising results of AAPM data using various methods. The yellow box and green box show the enlarged view of image and
difference image between network input and output, respectively. The intensity window of CT image is (-500,500)[HU] and the intensity
window of difference is (-200,200) [HU].


