
Supplementary Materials for
Polymorphic-GAN: Generating Aligned Samples across Multiple Domains with

Learned Morph Maps

1. Model Architecture
We provide additional descriptions of the architecture of PMGAN in this section.

1.1. Pre-trained StyleGAN
PMGAN is composed of the pre-trained StyleGAN2’s generator G, domain-specific morph layers M1,...,N and rendering

layers R1,...,N . We first sample a noise vector z ∼ p(z) from the standard Normal prior distribution and feed it through
G, which produces the output image IP and also the intermediate features u1, ..., uL for L features in G. In this work,
all experiments are carried out at 256 × 256 RGB image resolution. Thus, we store the generator features for each spatial
resolution from 4 × 4 to 256 × 256 before the final features are transformed via a 1 × 1 convolution layer (i.e. tRGB) that
produces the output RGB values. The features are shaped as (4× 4× 512), (8× 8× 512), (16× 16× 512), (32× 32× 512),
(64 × 64 × 512), (128 × 128 × 256) and (256 × 256 × 128), where the first two dimensions correspond to the height and
width, and the last dimension is for the number of channels.

1.2. MorphNet
Features u1, ..., uL contain valuable information, including semantic content as well as fine-grained edge information.

We use these features to produce domain-specific morph maps that can modify the geometry embedded in the features to be
suitable for each target domain. The MorphNet component of PMGAN first reduces each feature map’s channel dimension to
be smaller through a 1×1 convolution layer and then upsamples all features to match the largest spatial resolution 256×256.
Each 1× 1 convolution layers reduce the number of channels to 128 followed by a leaky ReLU [9] activation function.

The upsampled features are concatenated channel-wise, resulting in a (256 × 256 × 896) tensor. It goes through two
3× 3 convolution layers whose output channel dimensions are 512, followed by leaky ReLU. These layers are shared across
domains and the spatial dimension is preserved (with stride=1 and padding=1). The conv layers and upsampling operations
are represented as MergeFeatures in Algorithm 1 in the main text.

We add a sinusoidal positional encoding [15] for 2D to the merged features to inject grid position information which can
be useful for learning geometric biases in a dataset. We define the positional encoding as

PE(x, y, 4c) = sin(x/100008c/512)

PE(x, y, 4c+ 1) = cos(x/100008c/512)

PE(x, y, 4c+ 2) = sin(y/10000(8c+4)/512)

PE(x, y, 4c+ 3) = cos(y/10000(8c+4)/512)

where x ∈ [0, 255], y ∈ [0, 255] for spatial dimensions, and c ∈ [0, 127] for the channel dimension.
Finally, this summed tensor is processed by domain-specific convolution layers Md for each domain d. Md is composed of

two convolution layers. The first layer is spatial-dimension preserving 3 × 3 conv layer that outputs 512 channels, followed
by a leaky ReLU activation function. The second layer is spatial-dimension preserving 3 × 3 conv layer that outputs 2
channels, followed by a Tanh activation function and a scalar division by η which is a hyperparameter that controls the
maximum displacement we allow the morphing operation to produce. We use η = 3 for all experiments in this paper. Thus,
Md produces a H ×W × 2 morph map Md

∆, normalized between [−1/η, 1/η]. Md
∆ represents the relative horizontal and

vertical direction that each pixel would get its value from (a pixel here is (p, q) position in a 3-dim spatial tensor).

1.3. Feature Morphing
We follow Spatial Transformer Networks (SPN) [5] to differentiably morph features with Md

∆. We initialize a 2D sam-
pling grid from an identity transformation matrix, normalized between [−1, 1]. The sampling grid has the same shape as
Md

∆, and each pixel (p, q) in the sampling grid contains the absolute position (x, y) of the source pixel that will be morphed
into (p, q). For example, if pixel (p, q) has value (−1,−1), the vector at the top left corner of the source feature map will be
morphed into (p, q). The morph map Md

∆ is added to the grid, and we denote the resulting grid as Γ ∈ RH×W×2. Unlike
SPN that produces an affine transformation matrix with six parameters for sampling grid, we learn pixel-wise morphing
maps, which gives us precise control for fine-detailed morphing. For each layer l of generator features {u1, ..., uL}d from
Section 1.1, we perform the following Morph operation that bilinearly interpolates features:

ũpq
l =

Hl∑
n

Wl∑
m

unm
l max(0, 1− |xpq −m|)max(0, 1− |ypq − n|) (1)

where ũpq
l ∈ Rc is the morphed feature vector with c channels at pixel (p, q) for layer l, unm

l ∈ Rc is the source feature
vector prior to Morph at pixel (n,m) of ul ∈ RHl×Wl×c, and (xpq, ypq) is the sample point in Γ for pixel (p, q), assuming
unnormalized grid coordinates for ease of presentation. Note that Γ is also bilinearly interpolated to match the spatial
dimension of each layer (Hl,Wl).

The morphed features {ũ1, ..., ũL}d are now geometrically transformed to be suitable for domain d. Each of these features
is then processed via further convolution layers Rd to produce RGB images. Each Rd is composed of L output heads
for each morphed features in {ũ1, ..., ũL}d. Each head is implemented as three-layer modulated convolution layers from
StyleGAN2 [8] which takes the feature ũl as input. It also takes the latent code w = mapping(z) as an additional input for
the modulation process, where mapping is the mapping layer of the core generator in G. The first two layers output 512
channels, followed by leaky ReLU activation, and the last layer outputs 3 RGB channels. The RGB outputs from L layers
are summed together using skip connections as in StyleGAN2 [8]. Importantly, the Rd layers can correct small unnatural
distortions caused by the feature morphing process, in contrast to previous works that directly warp output images [13].

2. Datasets
We construct two multi-domain datasets for evaluation:

Cars dataset consists of five classes of cars from the LSUN-Car dataset [16]. We use an object classifier by Ridnik et
al. [11] that can output fine-grained object classes to divide the dataset into the following domains: Sedan (149K), SUV
(52K), Sports car (58K), Van (25K), and Truck (22K), with the number of images in parentheses. LSUN dataset is distributed
from https://www.yf.io/p/lsun.

Faces dataset consists of Flickr-Faces-HQ [7] (70K), MetFaces [6] (1.3K), as well as Cat (5.6K), Dog (5.2K) and Wild
life (5.2K) from the AFHQ dataset [3].

FFHQ dataset is distributed from https://github.com/NVlabs/ffhq-dataset. The images are published in Flickr by their
uploaders under either Creative Commons BY 2.0, Creative Commons BY-NC 2.0, Public Domain Mark 1.0, Public Domain
CC0 1.0, or U.S. Government Works. The dataset itself is licensed under Creative Commons BY-NC-SA 4.0 license by
NVIDIA Corporation.

MetFaces dataset is distributed from https://github.com/NVlabs/metfaces-dataset. The images are distributed under Cre-
ative Commons Zero (CC0) license by the Metropolitan Museum of Art. The dataset itself is licensed under Creative Com-
mons BY-NC 2.0 license by NVIDIA Corporation.

AFHQ dataset is distributed from https://github.com/clovaai/stargan-v2. We use the original version of the dataset. The
dataset is licensed under Creative Commons BY-NC 4.0 license by NAVER Corporation.

Sedan Truck SUV Sports Car Van

Figure 1. Aligned Samples from PMGAN trained on Cars dataset.

FFHQ MetFaces Cat Dog Wild Life

Figure 2. Aligned Samples from PMGAN trained on Faces dataset.

FFHQ MetFaces Cat Dog Wild Life

Figure 3. Top row: DC-StyleGAN2, Second row: *DC-StyleGAN2, Third row: Ours without MorphNet, Last row: Ours.

3. Experiments
In this section, we provide additional details on each of the models and algorithms used in the experiments section.

3.1. Ablation Studies

Domain-Conditional StyleGAN2 (DC-StyleGAN2) is a modified StyleGAN2 model that takes a one-hot encoded domain
vector as an input. The 5-dimensional one-hot vector is embedded through a linear layer that outputs a 512-dimensional em-
bedding vector. Then, the embedding is concatenated with w latent from the mapping network w = mapping(z), and then
is fed through a linear layer that finally produces a 512-dimensional vector that goes through the generator. The discriminator
is the same as StyleGAN2’s discriminator except that it is also conditioned on domain similar to the discriminator architec-
ture of class-conditional BigGAN [1]. We add the dot product of the penultimate layer’s output and domain embedding to
the unconditioned output of the discriminator. We provide additional aligned samples in Figure 1 and Figure 2. Figure 3
provides an additional comparison with baselines. Except for DC-StyleGAN2 which does not share the same parent model,
other models show samples from the same latent code.

We use domain classifiers to measure the domain classification accuracy indicating if models produce corresponding
samples for each domain. They are implemented as ResNet-18 [4] for the 5-way classification task, achieving 90.0% and
99.9% accuracy for Cars and Faces, respectively. We note that classification is much easier for Faces because of their distinct
texture.

3.2. Morph Map and Edit Vector Transfer

We provide additional examples on cross domain interpolation in Figure 4. Figure 5 shows translation between a source
and target domain where we fix the morph map of the source domain and use target domain’s rendering layers. Figure 6 also
shows translations between two domains, but this time, the rendering layers of the source domain are kept fixed while the
morph map from the target domain is used. They show how PMGAN is able to produce novel outputs by disentangling the

A BInterpolate

Figure 4. Cross-Domain Interpolation: we interpolate both the weights of domain-specific layers of two domains and their latent vectors
A&B.

shape and texture with morph maps.
For edit transfer, we use SeFa [12] for its simplicity to find edit vectors in PMGAN. SeFa produces edit directions in an

unsupervised way by finding the eigenvectors of ATA where A is the weight matrix of style layers in the core generator.
Therefore, it is data independent and takes less than one second to find the edit vectors. We use the official implementation
from https://github.com/genforce/sefa. We find meaningful vectors such as rotation, zoom, lighting and elevation. Figure 7
contains additional examples of how edit vectors can be transferred across all domains for Faces and Cars datasets.

3.3. Zero-shot Segmentation Transfer

Assuming there exists a method that can output a segmentation map for images from the parent domain, it is possible
to zero-shot transfer the segmentation mask to all other domains using PMGAN’s learned morph map. We directly use
the Morph operation on the segmentation map with M∆ after bilinearly interpolating the morph map to match the size
of the mask. As the morph map M∆ captures the geometric differences between domains, we can successfully use M∆

to transfer the parent’s segmentation masks across domains. We use pre-trained deeplab segmentation networks [2] from
DatasetGAN [18] for Sedan and FFHQ domains for Cars and Faces datasets, respectively. We then transfer them to other
domains. Specifically, we use the 20-part car model and 34-part face model trained with synthesized labels from DatasetGAN.
Figure 9 and 10 show additional segmentation transfer results. For Faces, we note that the noses of animals are always
registered at the same location as the mouths of human domains. PMGAN’s 2D morph maps are interpretable and easy to
edit as we know exactly what each pixel of the morph maps represent - the position of the source pixel that will be morphed
into the pixel. Therefore, to compensate for the fixed difference between the nose locations, we add a gaussian shaped

Wild Life -> DogCat -> Wild Life Cat -> MetFaces

Wild Life -> MetFacesMetFaces -> DogMetFaces -> Cat

Figure 5. Rendering with the target domain’s rendering layers while using the source domain’s morph maps.

Wild Life -> MetFaces MetFaces -> Cat Cat -> Wild Life

Figure 6. Rendering with the source domain’s rendering layers while using the target domains morph maps. Note how only the shape
changes according to the target domain indicating the disentanglement between shape and rendering.

FFHQ MetFaces Cat Dog Wild Life Sedan Truck SUV Sports Car Van

Figure 7. Edit transfer. Edit directions discovered through PMGAN’s core generator can be transferred across all domains. Faces: top-
rotation, middle-brightness, bottom-color. Cars: top-rotation, middle-zoom, bottom-color.

Figure 8. Random samples produced by StyleGAN2 trained on 5% of MetFaces dataset from Table 7 in the main paper.

downward offsets to the location of human face’s nose before transferring its segmentation. We set the peak of offset to
be -0.15 in the vertical direction (0 for the horizontal direction) which corresponds to moving nose downward by 7.5% of
the image size. The offest only needs to be calculated once. We emphasize that this still promotes feature sharing, as the
rendering layers need to render the same features (i.e. features representing mouth from human domain) according to their
domain. This also shows editing shapes directly using morph map is an interesting direction, which we leave for future work.

3.4. Image-to-Image Translation

Once an image is inverted in the latent space, PMGAN can naturally be used for image-to-image translation (I2I) tasks
by synthesizing every other domain with the same latent code. For both datasets, we use the w-latent space of StyleGAN
which is the output space of the mapping network of the core generator. On Faces dataset, we use encoder4editing [14]
(official code from https://github.com/omertov/encoder4editing) with an additional latent space loss we found to be helpful.
The latent space loss is defined as

∑
d Ew∼p(w)∥Ed(Gd(w)) − w∥ where Ed is the encoder for domain d to be learned, Gd

is the fixed pre-trained PMGAN for domain d and w is the sampled latent vector. As we can synthesize as many sampled
image and latent pair (G(w), w) as we want, this loss helps stabilizing the encoder training. We add the latent space loss to
the original loss function of encoder4editing.

On Cars dataset, we use latent optimization [7] to encode input images, which we found to be encoding better than
encoder4editing. We suspect the diversity of Cars dataset makes learning a generic encoder for the dataset challenging. We
use 250 optimization steps with learning rate of 0.1, reducing the LPIPS [17] distance between the output and input images.

Figure 11 and 12 contain additional image-to-image translation results from PMGAN. We also provide more translation
results from StarGANv2 in Figure 13.

3.5. Low-Data Regime

As indicated in Section 3.5 of the main text, for low-data regime training, we weigh losses by |πd|/maxl|πl| where |πd| is
the number of training examples in domain d. The intuition is that we want the generator features to be mostly learned from
data-rich domains while domains with significantly less data leverage the rich representation with domain-specific layers. To
demonstrate how FID was not able to capture the mode-collapse phenomenon, we include Figure 8 showing random samples
produced by StyleGAN2 trained on 5identity, indicating the model produces high-quality faces by memorizing them, but this
mode-collapse was not re- flected well in FID as shown in Table 7. We will add more examples for different models in the
supplementary.

3.6. Comparison to Plain Fine-Tuning

We use FreezeD [10] for fine-tuning experiments. Mo et al. [10] found that freezing low-level discriminator layers
improves fine-tuning performance. We freeze three discriminator layers for fine-tuning results. We note that StyleGAN-
ADA [6] also uses FreezeD along with their proposed adaptive discriminator augmentation. We have not used the adaptive
discriminator augmentation in this paper, but adding it to FreezeD or our model potentially would improve results, especially
when the number of data in target domain is small.

Sedan Truck SUV Sports Car Van

Figure 9. Zero-shot Segmentation Transfer on Cars. The segmentation mask from the leftmost column is transferred to all other domains.

FFHQ MetFaces Cat Dog Wild Life

Figure 10. Zero-shot Segmentation Transfer on Faces. The segmentation mask from the leftmost column is transferred to all other domains.

Input Recon Other Domains

Figure 11. Image-to-Image translation results on Cars dataset.

Input Recon Other Domains

Figure 12. Image-to-Image translation results on Faces dataset.

Input TruckSedan SUV

Sports Car

Van

Input TruckSedan Van

Figure 13. Additional Image-to-Image translation results on Cars dataset from baseline StarGANv2 model. StarGANv2 generally has
difficulty changing the geometry of the input.

References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis, 2019. 5
[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017. 6

[3] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016. 5

[5] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. NeurIPS, 28:2017–2025, 2015. 2
[6] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training generative adversarial networks

with limited data. In Proc. NeurIPS, 2020. 2, 9
[7] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4401–4410, 2019. 2, 9
[8] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image

quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8110–8119,
2020. 2

[9] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network acoustic models. In Proc.
icml, volume 30, page 3. Citeseer, 2013. 1

[10] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the discriminator: a simple baseline for fine-tuning gans. In CVPR AI for Content
Creation Workshop, 2020. 9

[11] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for the masses, 2021. 2
[12] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 1532–1540, 2021. 6
[13] Yichun Shi, Debayan Deb, and Anil K Jain. Warpgan: Automatic caricature generation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 10762–10771, 2019. 2
[14] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder for stylegan image manipulation.

ACM Transactions on Graphics (TOG), 40(4):1–14, 2021. 9
[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.

Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017. 1
[16] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset using deep

learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015. 2
[17] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a

perceptual metric. In CVPR, 2018. 9
[18] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, and Sanja Fidler.

Datasetgan: Efficient labeled data factory with minimal human effort. In CVPR, 2021. 6

	. Model Architecture
	. Pre-trained StyleGAN
	. MorphNet
	. Feature Morphing

	. Datasets
	. Experiments
	. Ablation Studies
	. Morph Map and Edit Vector Transfer
	. Zero-shot Segmentation Transfer
	. Image-to-Image Translation
	. Low-Data Regime
	. Comparison to Plain Fine-Tuning

