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In this supplementary material, we provide implementation details, extensive analyses, and more experimental results.

We first provide the implementation details to reproduce the main experimental results in Sec. 1. To prove our novelty, we

provide more analyses on our key components, i.e., confidence constraints on pseudo-labels and data augmentation in Sec 2.

In addition, we provide the inference results of randomly generated keypoints to prove that using lots of pseudo-labels is

effective for finding detailed correspondences. In Sec 3, we include additional quantitative and qualitative results on the

semantic correspondence benchmark dataset (i.e., PF-PASCAL, PF-Willow and SPair-71k).

1. Implementation Details

Hyper-parameters. As mentioned in Sec 4.1 of the main paper, we used almost identical network architecture and hyper-

parameters of CATs [1]. We provide additional hyper-parameters we used in Table 1 below. To verify the optimality of the

hyper-parameters, we conduct ablation studies on our confidence constraints on pseudo-labels and data augmentation in the

main paper. We also conduct additional analyses on the unsupervised loss components to prove generality of our components

in the following Sec 2.

hyperparameters SemiMatch

B 10

τ 0.5

Tu 1.5

paug photo source 0.2

paug photo weak 0.2

paug photo strong 0.2

tscale tps 0.4

γcontrastive 0.1

Table 1. Additional hyperparameter list of SemiMatch

PyTorch-like Pseudo Code. We provide the PyTorch-like pseudo code for SemiMatch in Algorithm 1.

2. Ablation Study

Loss Configuration. Before we begin the analysis, we first define each of the two key components of the unsupervised

loss. First, probability with uncertainty estimation is scaled by Tu, such that 1/ exp(Tu ·
∑

j P (i, j) logP (i, j)) where

P (i, j) is j-th target component of matching probabilities. Based on the importance of adjusting the scale of unsupervised

loss in proportional to supervised loss [6], we adjust the scale of unsupervised loss through dynamic λ defined as λ =
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Algorithm 1: SemiMatch Pseudo Code, PyTorch-like

for I S, I T, GT keypoints in loader:

theta = compute syn theta(random.rand())

feat S = net.feature extraction(I S)

feat Tw = net.feature extraction(photometric weak(I T))

feat Ts = net.feature extraction(geometric warp(photometric strong(I T, GT keypoints),theta))

# dimension of corr.: (T feat H * T feat W , S feat H * S feat W)

corr S Tw, corr S Ts = net.correlation(feat S,feat Tw), net.correlation(feat S,feat Ts)

corr Tw S = net.correlation(feat Tw, feat S) # for fb check

mask bbox = get bbox mask(feat Tw.shape,GT keypoints).int()

mask fb = foward backward check(corr S Tw, corr Tw S).int()

mask thres = (torch.max(corr S Tw, dim=1) > tau).int() * exp(-Tu * uncertainty(corr S Tw))

mask = mask bbox * mask fb * mask thres

map S Tw = soft argmax(corr S Tw)

masked map S T = mask * map S Tw # hard labelling

pseudo map = geometric warp(masked map S Tw, theta)

flow pred = convert flow(map S Tw)

GT flow = keypoint to flow(GT keypoints)

sup loss = EPE(flow pred,GT flow)

unsup loss = contrastive loss(pseudo map.detach(), corr S Ts)

dynamic lamda = sup loss.detach() / unsup loss.detach()

Loss = sup loss + dynamic lamda * unsup loss

Loss.backward()

update(net) # update parameters

def uncertainty(correlation map) :

prob = soft max(correlation map,temp)

return (-prob * torch.log(prob)).sum(dim=1)

L∗

sup
/L∗

un−sup
, where L∗ is the loss value itself and no back propagation happens. We conduct ablation studies on the PCK

result, convergence rate, and the requirement of warm-up stage depending on the hyper-parameters of the unsupervised loss.

PCK Results in Details. Table 2 shows the importance of the unsupervised loss configuration through the PCK results

compared to the our best experiment setting. In Table 2 (a), we prove that our Tu is appropriate to measure the confidence

of the pseudo-labels. In addition, PCK decreases in Table 2 (b) demonstrates that uncertainty-based confidence estimation

is important. Furthermore, scaling of unsupervised loss dynamically for each iteration is effective rather than using constant

scale factor.

(a) Uncertainty temperature for Mthres

method PF-PASCAL (PCK@0.05)

(I) Ours (1.5) 80.1

(II) Soft (1.3) 79.7

(III) Hard (1.7) 79.3

(b) Components of unsupervised loss

method PF-PASCAL (PCK@0.05)

(I) Ours 80.1

(II) (-) Uncertainty 79.5

(III) (-) Dynamic λ 79.2

Table 2. Ablation studies of components in unsupervised loss configuration

Effectiveness of Uncertainty. As shown high PCK compared to (II) in Table. 3, which has the same level of probability

thresholding, we prove that uncertainty estimation is effective for stable training without warm-up stage. In addition, through

comparison between (I) and (III), it can be seen that it is more effective to use uncertainty than to use high probability

thresholding. The effectiveness of uncertainty on confidence estimation is also demonstrated through high PCK in Table 2,



method
PF-PASCAL

0.05 0.1 0.15

(I) w/ uncertainty (τ = 0.5) 78.9 93.5 96.8

(II) w/o uncertainty (τ = 0.5) 77.1 93.1 96.3

(III) w/o uncertainty (τ = 0.9) 76.2 92.6 96.4

Table 3. Ablation studies of uncertainty without warm-up stage

Data Augmentation. We conduct experiments not only on our novel keypoint-aware cutout (KeyOut), but also on aug-

mentation combinations suitable for dense correspondence that have not been explored in dense correspondence tasks. By

organizing new data augmentation combination for dense correspondence, adding Blur and KeyOut to the existing augmenta-

tion combination, we can confirm that those data augmentation improves the performance of SemiMatch as shown in Table 4.

Method Aug Blur KeyOut PCK@0.05

SemiMatch

✓ ✓ ✓ 80.0

✓ ✓ ✗ 79.4

✓ ✗ ✓ 79.6

Table 4. PCK@0.05 results depending on organizing data augmentation combination and using pseudo-labeling.

Visualization. When learning matching networks with semi-supervised framework, consisting of supervised loss and unsu-

pervised loss, they can find the correspondences on keypoints as well as around their peripheries. To prove this, we generate

new matching points at test time and conduct experiments whether SemiMatch can find correspondences for new points

compared to baseline and other state-of-the-art algorithms.

(a) (b) (c)

Figure 1. Matching results for random keypoint which is not GT keypoint in the test-set. The left figures are CATs results and the right

figures are SemiMatch results.

3. More Experimental Results

Quantitative Results. As shown in Table 1 of the main paper, we achieve a significant performance improvement at

PCK@0.05 compared to other previous state-of-the-art methods and our baseline, CATs [1]. It can be attributed to the fact

that SemiMatch is much more sensitive to minor difference between keypoint and its periphery, resulting in better PCK

results with much stricter matching criteria. To prove this, we show performance comparisons for baseline, CATs [1], and

SemiMatch through tables and curve graphs. As shown in the Table. 5, 6, and Table. 7, our approach provides better

PCK performance than CATs between α ranges from 0.01 to 0.1 on PF-PASCAL [2], PF-Willow [2] and SPair-71k [4],

respectively. In PF-PASCAL, we record the largest difference by 16.16 PCK@0.02. In addition, we also find the significant



differences by 4.05 PCK@0.06 in PF-Willow, and 1.42 PCK@0.04 in SPair-71k. As PCK’s α increases, PCK difference

generally decreases but it is natural phenomenon because the performance is less related to the training status of the network.

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

CATs [1] 7.8 28.2 49.9 64.8 75.4 80.9 85.7 88.7 90.8 92.6

SemiMatch 19.4 44.3 61.0 72.0 80.1 85.0 88.2 90.4 92.3 93.5

Table 5. Comparison with CATs [1] in PCK on PF-PASCAL [2]

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

CATs [1] 4.3 14.2 27.3 40.4 50.3 58.5 65.0 70.7 75.5 79.2

SemiMatch 4.0 15.5 30.5 43.8 54.0 62.3 69.0 74.4 78.6 82.1

Table 6. Comparison with CATs [1] in PCK on PF-Willow [2]

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

CATs [1] 1.93 7.0 13.8 20.9 27.7 33.6 38.6 43.0 46.8 49.9

SemiMatch 2.1 7.7 15.0 22.4 29.0 34.8 39.7 43.9 47.6 50.7

Table 7. Comparison with CATs [1] in PCK on SPair-71k [4]

Qualitative Results. We provide the additional qualitative results to complement Fig.1 in the main paper by including

more visualization results and comparison on other state-of-the-art algorithms, such as DHPF [5], MMNet [7], CHMNet [3],

CATs [1]. We perform the PCK results and visualization mentioned above for PF-PASCAL [2] (Figure. 2, Figure. 3), PF-

Willow [2](Figure. 4, Figure. 5), and SPair-71k [4](Figure. 6, Figure. 7) respectively.



(a) CATs [1] (b) DHPF [5] (c) CHMNet [3] (d) SemiMatch (e) Ground Truth

Figure 2. Qualitative examples of multiple networks and our SemiMatch applied to pairs of PF-PASCAL [2] dataset.



(a) CATs [1] (b) DHPF [5] (c) CHMNet [3] (d) SemiMatch (e) Ground Truth

Figure 3. Qualitative examples of multiple networks and our SemiMatch applied to pairs of PF-PASCAL [2] dataset.



(a) CATs [1] (b) DHPF [5] (c) CHMNet [3] (d) SemiMatch (e) Ground Truth

Figure 4. Qualitative examples of multiple networks and our SemiMatch applied to pairs of PF-Willow [2] dataset.



(a) CATs [1] (b) DHPF [5] (c) CHMNet [3] (d) SemiMatch (e) Ground Truth

Figure 5. Qualitative examples of multiple networks and our SemiMatch applied to pairs of PF-Willow [2] dataset.



(a) CATs [1] (b) DHPF [5] (c) CHMNet [3] (d) SemiMatch (e) Ground Truth

Figure 6. Qualitative examples of multiple networks and our SemiMatch applied to pairs of SPair-71k [4] dataset.



(a) CATs [1] (b) DHPF [5] (c) CHMNet [3] (d) SemiMatch (e) Ground Truth

Figure 7. Qualitative examples of multiple networks and our SemiMatch applied to pairs of SPair-71k [4] dataset.
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