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A. Architecture Details
A.l. Identity Embedding Model: f*

emb

Our identity embedding model is based on ResNet-50
[3], where we use a different head for contrastive learning
as seen in Fig. Al. Note the UnitNorm in the final layer
makes 2. to be unit-length (||zs-c|| = 1). The network
invovles total 32.3M parameters.

A.2. Swap-Image Generator: f,.,

Our generator architecture is mostly the same as
NCSN++ [8] except for the following three differences (as
described in the main manuscript, Sec. 4.2): 1) we use half
as many channels, 2) we use the identity embedding instead
of the time embedding, and 3) we add an input-to-output
skip connection. Fig. Al (a) shows the detailed structure
with dimensional information. The network involves total
9.8M parameters.

Up/Down Sampling & Skip-Connections Note in each
of the outer block containing multiple ResBlocks, the first
ResBlock handles upsampling or downsampling (except for
the ResBlock x5, where the second ResBlock handles up-
sampling). There are 13 skip connections in total (13 =
3 x 4 4 1; +1 is the input-to-output skip), where the input
to each of the ResBlock in the encoder part (before the At-
tention Block) is handed over to the decoder part (after the
Attention Block). On the decoder side, the first three Res-
Blocks of each outer block get the skip-connections (except
for the ResBlock x5, where the second through the fourth
get the skip-connections).

Details on the ResBlocks of the Generator We describe
some essential details of the ResBlocks of the generator
here. The complete information can be found in [8].

The overall structure of ResBlock is not much different
from the conventional design [3]. However, as shown in
Fig. Al (b), a structure for conditioning on the identity em-
bedding vector z,.. is added (similar to [1]). The condition-
ing is done by 1) projecting zs,. Onto a ¢, ¢-dimensional
vector, 2) spatially broadcasting the result, and 3) adding
it to the intermediate output of the original path (cgy: is
the number of output channels of the current block). When
upsampling or downsampling is used, the optional compo-
nents (denoted by yellow and dash-dotted outline) are also
computed.

Throughput and FLOPs at Inference Time Smooth-
Swap generator has much higher FLOPs (in MACs) than
HifiFace [9] (214.47G to 102.39G). However, it shows far
better throughput (42.96 fps) than others (SimSwap [2]:
31.17, HifiFace [9]: 25.29; FaceShifter [6]: 22.34)!. We
speculate this is due to the simple and homogeneous ar-
chitecture, which is advantageous for speed-up with GPU
computing.

I Test settings and values of other models are adopted from [9]



A.3. Discrminiator: fg;,

We use the same discriminator as the one used in Style-
GAN?2 [5]. The network involves total 28.9M parameters.

B. More Image Samples from Smooth-Swap

We show extended sets of swapped-image samples from
our Smooth-Swap model. The following three figures, Fig.
A3, A4, and A6 present the results of the same experiments
as Fig. 4, 5, and 6 in the main manuscript, but with dif-
ferent source and target pairs. Fig. A5 shows the results
for out-of-distribution cases, where oil paintings (Metfaces
dataset [4]) are used for swapping. Although the model is
never trained on such images, the results are of decent qual-
ity, reflecting the characteristics of the source and the target
with shape change.

C. Extreme Cases and Limitations

We note that Smooth-Swap can fail when a target im-
age involves occlusion or an extreme pose as shown in Fig.
A2. However, we believe each case can be handled by post-
processing (e.g., HEAR-Net of [6]) and supplying more
extreme-pose examples for training.
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Figure Al. Detailed architecture of our Smooth-Swap model; both the identity embedder and the generator are shown. The intermediate
feature-map dimensions are written in the order of (channels x height x width). ‘ResBlock x4’ in (a) denotes that there are four residual
sub-blocks connected sequentially; the structure of the sub-block (i.e., ResBlock) is detailed in (b). Note the multi-line text inside blocks
should be read from the bottom (e.g., Linear(512) to BatchNorm to UnitNorm for the last embedder block). See Sec. A.2.
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Figure A2. Some failure cases of Smooth-Swap. See Sec. C
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Figure A3. Comparison of the face-swapping results of various models on the FaceForensics++ dataset [7] (extension of Fig. 4 in the main
manuscript)



Figure A4. More results of Smooth-Swap on the FFHQ test split (extension of Fig. 5 in the main manuscript). Active change of identity is
observed. However, in some cases where the source and the target have largely different face shapes (e.g., a child in the rightmost column
in the lower-right block), artifacts are noticed. In real-world applications, such cases can be avoided by choosing the swapping pairs from
a similar age range.



Figure AS. Results of Smooth-Swap across the FFHQ test split and Metfaces [4]. Even though the model is not trained on the oil paintings
of Metfaces, it can still produce swapped images with a decent quality



Figure A6. More face swapping results of Smooth-Swap on wild images (extension of Fig. 6 in the main manuscript).
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