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In this supplementary material, we provide additional
details, results and analyses of our proposed Transfor-
Matcher pipeline.

A. Rotary positional embedding details
To keep the paper self-contained, we briefly ex-

plain on the formulation of rotary positional embedding
(RoPE) [11]. The aim of RoPE is to find an encoding mech-
anism f{q,k} such that the inner product, g, of query qm and
key kn of embeddings xm,xn ∈ Rd encodes position in-
formation only in the relative form as follows:

〈fq(xm,m), fk(xn, n)〉 = g(xm,xn,m− n), (1)

where m − n denotes the relative position between the
embeddings. Starting from a simple case with dimension
d = 2, RoPE exploits the geometric properties of vectors
on 2D plane and its complex form to prove that a solution
to Eq. (1) is:

fq(xm,m) = (Wqxm)eimθ, (2)

fk(xn, n) = (Wkxn)einθ, (3)

g(xm, xn,m− n) = Re[(Wqxm)(Wkxn)*ei(m−n)θ],
(4)

where Re[·] is the real part of a complex number, (Wkxn)*
is the conjugate complex number of (Wkxn), and θ ∈ R is
a predefined non-zero constant. Writing f{q,k} in the form
of matrix multiplication gives:

f{q,k}(xm,m) =(
cos mθ −sin mθ
sin mθ cos mθ
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where [x
(1)
m , x

(2)
m ]> = xm given d = 2. Henceforth, to

incorporate relative positional embedding, we can simply
rotate the key/query embedding by amount of angle in mul-
tiples of its position index. The above formulation can be

generalized to any even dimension d, by dividing the d-
dimension space to d

2 sub-spaces, which are combined us-
ing the linearity of inner product. We refer the readers to
the original paper [11] for full details.

B. Additional results and analyses
Category-wise PCK results. We show the category-wise
PCK results of our model on the SPair-71k dataset [8] in
comparison to existing methods in Table A1. It can be seen
that TransforMatcher achieves the highest PCK overall, and
the highest PCK in the majority of categories. An inter-
esting observation is that while CATs [1] trained with aug-
mentation shows consistently improved results compared
to using no augmentation, TransforMatcher trained without
augmentation often shows higher PCK values compared to
TransforMatcher trained with augmentation. We conjecture
this is because CATs also processes the actual 2D feature
maps of source and target images together with the 4D cor-
relation map using transformers, while TransforMatcher re-
lies only on the 4D correlation map to find correspondences.
An important takeaway is that is that while leveraging data
augmentation provides more accurate semantic correspon-
dences overall, it may have adverse effects on certain cate-
gories depending on the network architecture.
Ablation on correlation map channel dimension. We
stated in the main paper that we construct a multi-channel
correlation map as it is architecturally natural, and to exploit
the richer semantics in different levels of feature maps. We
conduct an experiment to compare the results of Transfor-
Matcher when using a single-channel correlation map in-
stead of a multi-channel correlation map. For fairness, we
use the same bottleneck layers of conv4 x and conv5 x,
and construct a single-channel correlation map by either
(1) concatenating the multi-layer features along the channel
dimension prior to correlation computation(Singleconcat),
or (2) taking the mean of the multi-channel correlation
map(Singlemean). Table A2 shows the results of this com-
parison, where using multi-channel correlation map yields
significantly higher results compared using a single-channel
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Methods aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv all

NC-Net [10] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
HPF [7] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 14.9 31.5 35.6 28.2
SCOT [5] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6
DHPF [9] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHMNet [6] 49.6 29.3 68.7 29.7 45.3 48.4 39.5 64.9 20.3 60.5 56.1 46.0 33.8 44.2 38.9 31.3 72.2 55.6 46.4
PMNC [4] 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4
MMNet [12] 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6 40.9
CATs [1] 46.5 26.9 69.1 24.3 44.3 38.5 30.2 65.7 15.9 53.7 52.2 46.7 32.7 35.2 32.2 31.2 68.0 49.1 42.4
CATs† [1] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

TransforMatcher 54.5 33.9 72.2 38.5 47.7 55.3 45.6 65.7 25.2 62.6 58.0 47.0 40.7 44.2 43.1 35.3 71.9 61.6 50.2
TransforMatcher† 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7

Table A1. Classwise PCK on SPair-71k. Higher PCK is better. All the results reported in the table uses pretrained ResNet-101 model as
the feature extractor. † indicates the use of data augmentation during training. Numbers in bold indicate the best performance, followed by
the underlined numbers. It can be seen that while TransforMatcher achieves the highest PCK overall, the usage of augmentation results in
a decrease in PCK in certain categories.

Channel
SPair-71k
@αbbox

0.05 (F) 0.1 (F)

Singleconcat 20.9 41.7
Singlemean 24.1 45.1
Multi (ours) 32.4 53.7

Table A2. Ablation on correlation map channel dimension.
Singleconcat and Singlemean denote single-channel correlation maps
obtained by (1) concatenating the multi-layer features along the
channel dimension prior to correlation computation, or (2) taking
the mean of the multi-channel correlation map, respectively. Using
multi-channel correlation map yields the highest results.

correlation map yielded by either Singleconcat or Singlemean.

C. Additional qualitative results

In Fig. A1, we qualitatively compare TransforMatcher
and CATs [1], where TransforMatcher is seen to establish
more accurate correspondences. We also show additional
example visualization results in Figures A2-A4, where the
source image is TPS-transformed [3] to the target image us-
ing predicted correspondences, aligning common instances
in each image pair. As seen in Figures A2 and A3, the
proposed method, TransforMatcher, effectively aligns fore-
ground instances in presence of large scale, viewpoint, and
illumination differences.

D. Details on nonlocality analysis of match-to-
match attention

In this section, we provide implementation details re-
garding the analysis on nonlocality of match-to-match at-
tention which is presented in the final part of section 5.2 of
the main paper. Recall that we define the measure of nonlo-
cality of an MHSA at layer l as the average of interactions

between attention scores and relative offsets:

Φl =
1

Z

∑
h∈[Nh]

∑
(q,k)∈X×X

A
(h)
q,k‖q− k‖2, (6)

where Z is normalization constant and X is a set of spa-
tial positions in C. As we found that the global query-
key interaction in Eq.(5) is inadequate to effectively quan-
tify this metric, we build pair-wise query-key interac-
tion: A

(h)
q,k = σ(Q̂(h)K(h)>) ∈ RT×T where Q̂

(h)
i :=

Q
(h)
i σ(τwqQ

(h)>), q,k ∈ R4, and T = HWHW . The
further the query attends (‖q−k‖), the larger the nonlocal-
ity (Φl).

To measure the nonlocality of a convolutional layer, fol-
lowing the work of Cordonnier et al. [2], we represent a
d-dim conv layer with kernel size K as an MHSA with Kd

heads with following constraint: σ(A
(h)
q,: )k equals to 1 if

q − k = ∆K , and 0 otherwise where ∆K is a set of local
offsets. For example, ∆K := [−1, 0, 1]× [−1, 0, 1] if d = 2
and K = 3. We used d ∈ {4, 6} and K ∈ {3, 5, 7, 9, 11} in
our experiments to visualize Figure 6.

In plotting Figure 7 of the main paper, we utilize the
difficulty levels of image pairs in the SPair-71k dataset.
Each pair in SPair-71k has annotations describing the types
(viewpoint & scale variations, truncation, and occlusion)
and levels (easy, medium, and hard) of difficulty. For trun-
cation and occlusiuon, a pair is easy if no instances are trun-
cated/occluded, medium if only one instance is, and hard if
both are.
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TransforMatcher (ours) CATs

Source Target Source Target

Figure A1. Qualitative comparison between the proposed Trans-
forMatcher (left) and CATs [1] (right). We show keypoints in cir-
cles and predictions in crosses with a line that depicts matching
error. Best viewed in electronic forms.

Source Target Result

Figure A2. Example visualization results with large scale changes
from SPair-71k [8].
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Source Target Result

Figure A3. Example visualization results with large viewpoint and
illumination changes from SPair-71k [8].
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Source Target Result Source Target Result Source Target Result

Figure A4. Example visualization results from SPair-71k [8].
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