Towards Weakly-Supervised Text Spotting using a Multi-Task Transformer

Supplementary Materials

The following sections provide additional explanations
regarding our method. In Sec. A we emphasize the novel
aspects of our architecture design. Sec. B portrays a vi-
sualization of the self-attention mechanism that is used in
our system. Sec. C shows the model performance on ran-
dom strings and Sec. D contains further details about the
recognition heads and the training time.

A. Architecture Comparison

TextTranSpotter (TTS) suggests a text spotting archi-
tecture design which is different from existing approaches.
Fig. 1 shows a comparison between common text spotting
architectures and TTS. The key difference is the use of the

joint query embeddings which allows sharing most of the
weights between the recognition and detection tasks, and
changes the way the recognition and detection heads oper-
ate. In most text spotting architectures [| —4] only the convo-
lutional backbone is joint, meaning most of the computation
is done in each head separately. In TTS, the transformer
encoder-decoder is also shared, such that about 95% of
the model weights are shared between the two tasks. The
detection head in our approach consists of only a few linear
layers and has about 1% of all of the model’s parameters.

In most previous approaches, the input to the different
heads is a spatial feature map describing the image. This
feature map is then cropped using a pooling operation and
fed into the recognition head. During training, most meth-

Encoder-Decoder Query Recognition Head
Embedding ;
T

Transformer
Encoder- g
Decoder >

O ! Segmentation Head

»Deconv polygon

Recognition Head
GT text:

Recognition

Detection Head

Detection

Segmentation Head

Feature GT boxes—,
Embedding
o| Cropping
Module ™
Backbone]
GT boxesj
Cropping
Module g

Segmentation

Figure 1. TextTranSpotter architecture compared to common approaches. An overview of TTS (top) compared to common text
spotting approaches (bottom). The joint components in each architecture are colored in blue and the separate components for each head

are colored in orange. In TTS, the main component of the model, the

transformer encoder-decoder is shared between the recognition and

detection tasks while in most approaches the main components are in the separate heads.

ods use the ground truth bounding boxes for the pooling.
During inference, the heads operate sequentially so that the
predictions of the detection head are used to perform the
pooling before the recognition head. In contrast, in TTS the
input to both heads is a one-dimensional feature vector for
each query describing its content, including its location and
transcription. This enables the recognition and detection
to work simultaneously and optimize the query embedding
for both tasks. Together with the Text Hungarian Loss de-
scribed in the paper in Sec. 3.2, it allows training the model
without using the ground truth bounding boxes as input to
the recognition head.

B. Deformable Attention

One of the key features of our architecture is the ability
to read text without any explicit spatial information regard-
ing its location in the image, such as masks or bounding
boxes. As opposed to existing two-stage methods, in which
an accurate RoIPooling mechanism is crucial for the system
to read rotated and curved text, TTS can handle such cases
by design. The deformable attention mechanism, which is
the main building block of the deformable transformer [5],
is able to adjust the structure of its interest area dynami-
cally, ignoring irrelevant or noisy parts of the image, and
is therefore invariant to the text orientation and curvature.
Since the deformable transformer is shared and optimized
for both detection and recognition heads, it learns attention
kernels which are meaningful for both tasks.

Fig. 2. shows an illustration of the cross-attention map
of the decoder. We draw all six layers of the decoder, with
8 self-attention heads each, on the same image, where each
head contains 4 sampling points. The attention weight of
each sampling point is illustrated by its color. Even though
the bounding-box contains text other than the desired word,
the attention maps focus on the the correct word, allowing
the recognition head to correctly predict its transcription.

C. Performance on Random Strings

In Figure 3 we show the predictions of the model on ran-
dom strings. Even though such cases are not common in the
dataset, TextTranSpotter is able to predict them correctly.
In the paper, we also presented cases of out of vocabulary
words (“TSINGHUA”, Figure 5 in the paper). These cases
show that the model does not memorize the training set vo-
cabulary and is able to generalize to unseen strings.

D. Architecture and Training Details
D.1. Recognition Heads

The ablation study included a comparison between two
possible recognition heads: an RNN and an MLP (linear)

Figure 2. Deformable attention. Left: Prediction example in
which the bounding box contains irrelevant text. Right: De-
formable attention map of the decoder layers. Each sampling point
is marked as a filled circle whose color indicates its correspond-
ing attention weight. The reference point is shown as green cross
marker, and the predicted bounding box is shown as a green rect-
angle. The attention clearly segments the word “imprisoned” from
rest of the text located in the bounding box.

Figure 3. TextTranSpotter predictions on random strings.
TextTranSpotter is able to predict random strings correctly, even
though it was not trained on such data.

head. The results were presented in Table 5. Here we in-
clude an explanation about each option.

The RNN head consists of: (1) an LSTM layer mapping
the 1D query embedding into a f.p, tensor at each step
(2) character-level layer, mapping each f.p,, feature into
an alphabet-sized softmax. The LSTM receives as input a
one-hot encoding of the previous character predicted.

The linear head consists of: (1) word-level layer, map-
ping the 1D query embedding into a L,org X fehar tensor,
and (2) character-level layer, mapping each f.p,, feature
into an alphabet-sized softmax.

D.2. Training Time

Training was done on 8 A100-SXM4 GPUs. Synthtext
pretrain, fully-supervised finetune, and weakly-supervised
finetune took 4 days, 25 hours, and 10 hours, respectively.

References

(1]

(2]

(3]

(4]

(5]

Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, and
Tianwei Wang. Text recognition in the wild: A survey. ACM
Computing Surveys (CSUR), 54(2):1-35, 2021. 1

Minghui Liao, Guan Pang, Jing Huang, Tal Hassner, and Xi-
ang Bai. Mask textspotter v3: Segmentation proposal network
for robust scene text spotting. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 23—
28, 2020, Proceedings, Part XI 16, pages 706-722. Springer,
2020. 1

X. Liu, Ding Liang, Shihan Yan, D. Chen, Y. Qiao, and Junjie
Yan. Fots: Fast oriented text spotting with a unified network.
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5676-5685, 2018. 1

Yuliang Liu, Chunhua Shen, Lianwen Jin, Tong He, Peng
Chen, Chongyu Liu, and Hao Chen. Abcnet v2: Adaptive
bezier-curve network for real-time end-to-end text spotting.
arXiv preprint arXiv:2105.03620, 2021. 1

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2

	. Architecture Comparison
	. Deformable Attention
	. Performance on Random Strings
	. Architecture and Training Details
	. Recognition Heads
	. Training Time

