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Figure 1. Model architecture of the MLP used to encode the im-
plicit reconstruction. All boxes reference fully connected layers.
Light gray boxes use ReLU activation function, while dark gray
boxes use sigmoid activation function. One skip connection is
used by concatenating the layers output with the models input.

1. Model Architectures
1.1. Implicit Model

The MLP Architecture is inspired by the architecture
used in NeRF by Mildenhall et al. [5]. We forward the po-
sitional encoding of the sample’s position in model space
through nine fully connected layers with 256 features and a
ReLU activation function. We retrieve the output by a sig-
moid activation function in the output layer to predict den-
sities in the range [0, 1]. We use one skip connection, which
concatenates the output of the previous layer with the input,
as seen in Fig. 1.

1.2. Noise Model
The noise model consists of a Normalizing Flow net-

work. This network comprises eight 1D Radial Flow lay-
ers [7], of which four layers are conditioned on the clean
signal. To condition the layers on the signal we use a MLP
with one hidden layer with 16 features and ReLU activa-
tion. The output layer uses Tanh activation to fit the param-
eter range ∈ [−1, 1]. This MLP then predicts parameters
of the 1D Radial Flow layer based on the input pixel inten-
sity. To retrieve the noise distribution, which we want to
transform into a normal distribution using the noise model,
we compute the difference of the predicted clean signal and
the known noisy signal. In Ours, the clean signal is re-

Figure 2. Model architecture of the Normalizing Flow used to
model the noise. Red boxes reference 1D Radial Flow layers.
Green boxes reference 1D Radial Flow images, which are con-
ditioned on the clean signal. The noise distribution is retrieved by
computing the difference of the clean signal and the noisy signal.

trieved from the prediction of the implicit model since only
the noisy measurement is available.

2. Synthetic Data
To generate synthetic data we randomly place ellipsoidal

shells and a density model of the ZIKV (i.e., Zika) virion
at 15Å by Long et al. [3] in a cubic volume. In Fig. 3 we
show an overview of the used projections for the different
methods.

3. Noise Synthesis
To generate the noise of the projections we train our

noise model in a supervised fashion from pairs of long and
short exposure STEM images, as already described in the
main paper Sec. 4. We here evaluate the trained noise
model in comparison to two baseline approaches: First, we
assume a Gaussian distribution and optimize it’s parame-
ters from the long and short exposure data using MLE. Sec-
ond, we assume a Poisson distribution and again optimize
it’s parameters from the long and short exposure data us-
ing MLE. Compared to the Gaussian, the Poisson distribu-
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Figure 3. Examples of synthetic data at low tilt angle. Clean is generated using our image formation model. Noisy adds synthetic noise to
the Clean, using Normalizing Flows. Denoised is a denoised version of Noisy, using BM3D.

tion is able to model signal dependence of the noise. We
compare the resulting noise distributions with the given dis-
tribution of the data quantitatively by reporting the Bhat-
tacharyya coefficient and distance, as well as the Jensen-
Shannon-Divergence (Table 1). We also provide a quali-
tative evaluation in Fig. 4. Both baselines seem to fit the
true distribution similarly well. While the Poisson distribu-
tion prevails according to the Jensen-Shannon-Divergence,
the Gaussian distribution has the overhand regarding Bhat-
tacharyya coefficient and distance. Still, the approximation
using our noise model fits the real distribution the best in all
metrics.

Table 1. Main quantitative results of different methods for noise
modeling. We report Jensen-Shannon-Divergence (JSD), Bhat-
tacharyya coefficient (BC) and Bhattacharyya distance (dBC). We
optimize the parameters of the distributions Poisson and Gaussian
using MLE. Our approach using Normalizing Flows outperforms
the baseline methods in all metrics. The best method is shown in
bold.

Methods JSD BC dBC

Poisson 0.96 0.99 0.15
Gaussian 1.07 0.99 0.12
Normalizing Flow 0.58 1.00 0.03

4. Model Capacity
We further investigate the influence of model capacity on

the performance of our method. Therefore, we separately
investigate the capacity of the implicit model, and the noise
model.

4.1. Implicit Model Capacity
To investigate the effect of the capacity of the implicit

model we increase and decrease the number of features
in the hidden layers. The capacity of the noise model re-
mains fixed during these experiments. We compare the per-
formance of Ours and L2Noisy. We investigate perfor-
mance for 32, 64, 128 and 256 features in all hidden, fully
connected layers. We find that increasing capacity slightly
improves performance of L2Noisy and Ours. Specially
for small model capacities Ours is not able to outperform
L2Noisy (see Table 2).

4.2. noise model Capacity
To tune the capacity of the noise model we increase and

decrease the number of layers used. In this experiment, we
reduce/increase the eight layers of the model by multiples
of two. Still, the number of conditional and unconditional
layers is always balanced. We fix the capacity of the im-
plicit model to the one described in Sec. 1.1 and then train
the model using Ours. We investigate performance of the
noise model using 2, 4, 8 and 16 layers. Quantitative eval-
uation (see Table 3) shows that increasing the capacity of



Figure 4. Qualitative results of different methods (rows) for modelling the noise. We use MLE to approximate parameters of a Gaussian
and Poisson distribution from the data. Normalizing Flow is trained on the data and makes no further assumption of the noise distribution.
It outperforms the former.

Table 2. Main quantitative results of the influence of MLP Capacity. For both methods the reconstruction accuracy seems to improve with
increased model capacity. Especially noteworthy is the finding, that L2Noisy outperforms Ours for small model capacities by a slight
margin. We argue that this finding is mostly accountable to the imbalance of the noise model and the implicit model, since capacity of the
noise model was fixed for all experiments on the MLP Capacity. Experiments on the noise model capacity underline this assumption.

Method Features 2D 3D
PSNR MSE DSSIM PSNR MSE

L2Noisy

32 12.84 5.397 2.038 19.73 1.065
64 13.69 4.433 1.925 19.57 1.103

128 13.68 4.450 1.884 19.85 1.034
256 13.86 4.271 1.885 19.73 1.064

Ours

32 13.47 4.672 1.990 19.28 1.181
64 13.32 4.830 1.925 19.93 1.017

128 14.15 3.996 1.912 19.33 1.166
256 19.93 1.020 0.645 21.75 0.669

2D DSSIM 2D MSE 2D PSNR

3D PSNR 3D MSE

only the noise model does not necessarily improve recon-
struction accuracy of Ours.

4.3. Discussion
Ours is able to prevent the noise model to learn struc-

tures of the 3D signal, since we only condition it on sin-
gle pixels. On the other hand, we can not prevent the im-
plicit model to incorporate the noise in the reconstruction
by mapping it to a cylindrical structure around the region of
interest as done by L2Noisy. Hence, we need to find a bal-
ance in training to restrict the implicit model. The balance
between noise model and implicit model can be influenced
by many different factors such as learning rate, optimizer

choice, used model capacities and loss regularization terms.
Also, approaches like alternate training, which is commonly
used for the training of GAN [2] models, to train Generator
and Discriminator networks, might help to find a suitable
balance between the noise model and the implicit model.
We leave the investigation of these factors for future work.

5. Defocus
During data acquisition of STEM, out-of-focus areas can

occur especially at high tilt angles and at distances far away
from the tilt axis. This can influence the reconstruction pro-
cess, since observations of the same point in world space
appear differently, when seen from different angles. We



Table 3. Main quantitative results of the influence of noise model
Capacity. The experiment underlines the importance of balance
between the noise model and the implicit model. Increasing the
capacity of the noise model will not compulsorily improve perfor-
mance.

Layers 2D 3D
PSNR MSE DSSIM PSNR MSE

2 13.77 4.352 1.861 19.77 1.054
4 15.71 2.792 1.461 20.62 0.866
8 19.93 1.020 0.645 21.75 0.669
16 14.22 3.921 1.865 19.43 1.141

show, using synthetic data, that accounting for this blur dur-
ing reconstruction can help to improve the reconstruction.
Therefore, we apply a Gaussian blur with a variable kernel
size κ, depending on the formula:

κ(x)(α, d) = exp(−||x|| · tan(α) · d) (1)

where α is the tilt angle and d the distance in image space
from the tilt axis. This formula assigns a larger kernel size
to areas with high tilt angle and far distance from the tilt
axis. An example of the synthetic data in comparison to
real data can be seen in Fig. 5.

During reconstruction, we apply Monte Carlo integration
over the defocus area in the image by sampling multiple
rays. However, for computational reasons, we use only one
sample during training. This setup converges more slowly
than using multiple samples but allows for sampling more
pixels in each batch. We can show in a quantitative eval-
uation (see Table 4) that, assuming the emergence of out-
of-focus blur is known, handling this blur during training
improves the reconstruction quality.

6. Comparison of L1 and L2 Loss
For learned approaches which do not use a noise model,

we compare the use of L1 and L2 loss. Therefore, simi-
lar to L2Noisy we train an implicit model using L1 loss.
We will refer to this model as L1Noisy. We found that
L2Noisy outperfroms L1Noisy by a large margin. We
hence used L2 loss for all learned reconstructions without a
noise model.

Qualitative as well as quantitative evaluation can be seen
in Fig. 6. Here, we also compare to the use of the noise

Table 4. Main quantitative results of the influence of the out-of-
focus effect on the reconstruction. L2Clean functions as an up-
per bound, as it is trained on synthetic data without out-of-focus
effect. L2Blur is trained similar to L2Clean but using syn-
thetic data which contains out-of-focus images. Lastly, L2Blur+
is trained using synthetic data with out-of-focus images, taking
this into account during training.

Method 2D 3D
PSNR MSE DSSIM PSNR MSE

L2Clean 20.79 0.838 0.383 21.47 0.712
L2Blur 19.66 1.090 0.514 20.15 0.965
L2Blur+ 20.89 0.819 0.412 20.42 0.909

model by comparing to Ours.

7. Denoising of Projections
We explore different denoising algorithms in order to

train L2Den. We further evaluate the impact of denois-
ing using WBP for reconstruction. We compare BM3D [4],
Deep Wiener-Kolmogorov Filters [6] and Topaz Denoise
(TD) [1]. We used the provided code by the authors to apply
denoising to the synthetic micrographs. For BM3D denois-
ing we used the provided python package. Regarding Deep
Wiener-Kolmogorov Filters we assume a poisson (DWK-P)
as well as a gaussian (DWK-G) noise distribution.

7.1. WBP
We investigate the influence of denoising the micro-

graphs before applying WBP for reconstruction. We will
call this method WBPDen. For results see Fig. 7.

We found that reconstruction quality was improved by
all denoisers. Especially DWK-P was outperforming all
other denoisers regarding quantitative evaluation. Still, the
reconstruction quality using WBP was worse compared to
all considered learned approaches. Moreover, we found that
especially small details are not well recovered when work-
ing on denoised micrographs.

7.2. Learned Reconstruction
Similar to Sec. 7.1 we investigate the influence of de-

noisers on L2Den. See results in Fig. 8
We found that BM3D outperforms all other denoisers.

Hence, for all considered experiments of L2Den we used
BM3D denoising. Still, similar to WBPDen, small details
are not well recovered when working on denoised micro-
graphs.

8. Comparison of Implicit and Explicit Recon-
struction

We compare the benefits of using an implicit represen-
tation of the reconstruction with and without the use of a
noise model. We therefore compare Ours and L2Noisy



Figure 5. Left: Synthetic out-of-focus image at a high tilt angle. Blur is more prone for pixels further away from the tilt axis. Right:
Out-of-focus real data for image at high tilt angle. Again, the blur is more prone in regions far away from the tilt axis.

Figure 6. Comparison of loss functions to compute implicit reconstruction with no noise model (L1, L2). Ours on the other hand uses a
noise model and hence uses an Maximum-likelihood Estimation (MLE) loss. For reconstructions without a noise model we found that L2

outperforms L1.

with the use of an implicit reconstruction and an explicit reconstruction accordingly. We initialize the explicit repre-



Figure 7. Comparison of denoisers to apply to noisy micrographs before reconstruction with WBP. We found that the reconstruction on
micrographs which have been denoised with DWK-P outperforms the other denoisers regarding quantitative evaluation. Still, learned
reconstructions outperform WBPDen by a large margin.

Figure 8. Comparison of denoisers to apply to noisy micrographs before reconstruction with L2Den. We found that the reconstruction on
micrographs which have been denoised with BM3D outperforms the other denoisers regarding quantitative as well as qualitative evaluation.

sentation with zeros. During training of the explicit recon-
struction we also use total variation (TV) regularization. We
hence compute the loss

L = Lnetwork + λ · LTV (2)

where Lnetwork corresponds to the L2- or MLE- loss,
depending on the used method. LTV corresponds to the TV
regularization which we compute on the 3D reconstruction
volume. We use λ to weight the regularization term. Based
on the different scopes of the loss functions, we found that

λ = 0.05 performed the best for the L2-loss, while λ = 50
performed the best for the MLE loss.

For training of the explicit model without a noise model,
we use an ADAM optimizer with a learning rate of 5−5. For
the training of the explicit model using a noise model, we
again use an ADAM optimizer, with a learning rate of 5−6.
The noise model uses a SGD optimizer with a learning rate
of 1−4. We again train all models for 400,000 iterations and
report the test error on the model with the highest validation
accuracy.

We were not able to train the explicit reconstruction on



Figure 9. We evaluate the importance of using a noise model during the reconstruction, as well as the influence of using an implicit
representation of the reconstruction. We evaluate this by comparing explicit and implicit reconstructions which use a noise model during
training Ours and which do not use a noise model during training L2Noisy. We found that the use of an implicit representation helps to
suppress artefacts generated by the missing wedge effect. Moreover, the use of a noise model seems to improve reconstruction quality.

a full sized volume of shape 1000 × 1000 × 1000 voxels,
based on limited memory resources. We hence trained the
explicit reconstruction as volume of shape 512×512×512.
During evaluation we downsample the ground truth phan-
tom volume and we reconstruct a tomogram of similar size
of the implicit model. We report PSNR and MSE in 3D on
the provided tomograms. Results can be seen in Fig. 9.

We found that the explicit representation is susceptible in
regard of the missing wedge effect. Further, without the use
of a regularization term, we observe that the explicit rep-
resentation is more prone to overfit to the noise in the pro-
jections than the implicit representation. Moreover, without
the use of TV regularization, the use of a noise model does
not help the reconstruction. However, with the application
of the TV regularization, the noise model helps the recon-
struction quality. Still, the combined use of implicit repre-
sentation and noise model outperforms all other baselines.
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