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We first introduce experimental setup and describe ad-
ditional experiments including ablation studies and qualita-
tive analysis. Then, we provide further discussions about
negative societal impacts, limitations, and future directions.

A. Experimental Setup
A.1. Datasets

Action Recognition. We evaluate our learned visual repre-
sentations on the action recognition task with HMDB51 [5]
and UCF101 [9] datasets. We use only video representa-
tions for this task and evaluate in the same protocol as [6].
The HMDB51 contains 7K videos from 51 human action
categories collected from movies and open sources. The
UCF101 contains 13K videos divided into 101 realistic ac-
tion categories collected from YouTube.
Video and Text Retrieval. We evaluate on the video-to-text
retrieval and text-to-video retrieval tasks with two widely
used benchmarks: YouCook2 [18] and MSR-VTT [13]. The
YouCook2 provides 2,000 instructional long untrimmed
videos for 89 recipes collected from YouTube. The MSR-
VTT contains 200K clip-sentence pairs with 20 natural sen-
tences per clip for video understanding. We report perfor-
mance using the recall at K (R@K) metric (K=1,5,10).
Action Step Localization. CrossTask is used to evaluate
localization performance, which measures the number of
correct step assignments. Following the evaluation protocol
of [20], we report the performance using CrossTask average
recall (CTR) metric. The CrossTask dataset provides 4.7K
instructional videos, collected for 83 tasks that are divided
into 18 primary and 65 related tasks.

A.2. Implementation Details

Backbone Model. We use S3D [12] for a visual encoder f
and a fully connected layer with pretrained word2vec [8]
embeddings for a text encoder g. We train S3D from

*is the corresponding author.

scratch. We randomly sample 8 consecutive clip-caption
pairs per one video (i.e., n = m = 8). Each clip consists
of 16 frames of 5 fps (3.2 seconds) and the size of each
frame is 224 × 224. For the word embedding, we use the
word2vec pretrained by Google News with the dimension
of 300. The output dimensions of representations for both
clips and captions are 512. For the results of MIL-NCE,
we report the performance of their official github since our
code is based on it.
Hyperparameters. We use a smoothing parameter γ = 0.1
at the soft-min and a temperature τ = 0.02 in Eq. (12) of
the main paper. As a distance metric, we use a shifted cosine
distance by -1, i.e., δi,j = − f(xi)

>g(yj)
‖f(xi)‖·‖g(yj)‖ .

Optimization. We use the ADAM [3] optimizer with
a cosine annealing and train our model for 300 epochs.
The warm-up strategy is adopted with the learning rate
from 10−5 to 10−3 during first 100K steps before the co-
sine annealing. For ablation studies, we use 10% of the
HowTo100M dataset and train 100 epochs.

B. Additional Experiments

B.1. Fine-Tuning on Downstream Tasks

In the main paper, we conducted a zero-shot learning
setting to evaluate only the quality of learned representa-
tions. In this section, we also fine-tune our backbone model
to various downstream tasks to evaluate the adaptability of
learned representations.

Text-to-Video Retrieval. We fine-tune the backbone
model on the text-to-video retrieval task.

Table 1 and 2 show the results of the fine-tuned mod-
els on the YouCook2 and MSR-VTT datasets. VT-TWINS
is superior to or on par with strong transformer-based [11]
baselines (e.g., COOT, ActBERT, and TACo) even though
we do not use a transformer-based cross-modal encoder. It
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Method Backbone R@1 R@5 R@10 MedR

Miech et al. [7] R3D-101 + w2v 8.2 24.5 35.3 24
ActBERT [19] R3D-101 + BERT 9.6 26.7 38.0 19
VideoAsMT [4] - 11.6 - 43.9 -
COOT [1] I3D + Transformer 16.7 40.2 52.3 9
TACo [14] S3D + BERT 16.1 40.3 52.2 9

VT-TWINS S3D + w2v 17.2 43.8 57.2 7

Table 1. Text-to-Video Retrieval on YouCook2.

Method Backbone R@1 R@5 R@10 MedR

C+LSTM+SA [10] VGG-19 4.2 12.9 19.9 55
SNUVL [16] R3D-152 + LSTM 3.5 15.9 23.8 44
Kaufman et al. [2] - 4.7 16.6 24.1 41
CT-SAN [17] R3D-152 + LSTM 4.4 16.6 22.3 35
JSFusion [15] R3D-152 + GloVe 10.2 31.2 43.2 13
Miech et al. [7] R3D-152 + w2v 14.9 40.2 52.8 9
VideoAsMT [4] - 14.7 - 52.8 -
ActBERT [19] R3D-101 + BERT 16.3 42.8 56.9 10

VT-TWINS S3D + w2v 19.4 40 52.5 9

Table 2. Text-to-Video Retrieval on MSRVTT.

shows that our proposed alignment algorithm helps to learn
the powerful representations of video and text.

B.2. Ablation Studies and Qualitative Analysis

Shifted Cosine Distance. As mentioned in Section 5.1.2
of the main paper, we use the shifted cosine distance in-
stead of the original cosine distance. When using the orig-
inal cosine distance, the range of the distance is [0, 2], i.e.,
positive values. Therefore, the DTW tends to find a triv-
ial path, e.g., a diagonal path, since it passes the minimum
number of pairs. On the other hand, there are both negative
and positive values if using shifted cosine distance because
it is in the range of [-1, 1]. These negative values encourage
the DTW path to visit more pairs since the more negative
valued pairs make the total cost decrease. Figure 1a shows
the different DTW paths, using cosine distance (the bottom
row) and shifted cosine distance (the top row). The DTW
path with the original cosine distance tends to form a triv-
ial diagonal path regardless of the values of the pairwise
distance matrix. In Table 3, (1) and (2) show that the align-
ment path obtained by shifted cosine distance (S) improves
the performance by a large margin compared to the original
cosine distance (C).

Feature Collapsing. As aforementioned, minimizing the
DTW loss alone (i.e., without negative pairs) causes feature
collapsing. The DTW with negative pairs, which can be
interpreted as the contrastive learning scheme, avoids fea-
ture collapsing by repelling the negative pairs. In Figure 1b,
the top one shows the pairwise distance with a contrastive

(a) Cosine Distance. (b) Feature Collapsing.

Figure 1. Results of Shifted Cosine Distance and Feature Col-
lapsing. ∆ is a pairwise distance matrix. The Soft-DTW path
matrix is the gradient matrices M defined in Section 4.1 of the
main paper.

learning scheme and the bottom one shows the pairwise dis-
tance without contrastive learning, i.e., just minimizing the
DTW loss. Without negative pairs, all the embeddings of
clips and captions are converged to a single point (i.e., fea-
ture collapsing) so that the distances of all pairs are about
-1. (3) in Table 3 demonstrates that, with feature collapsing,
the model turns to be incapable of any tasks compared to (1)
learned with contrastive learning scheme.

Smoothing Parameter γ. We also experiment with vari-
ous values of γ from the soft-min function to find an opti-
mal value. As mentioned in Section 3.1 of the main paper,
larger γ makes the Soft-DTW path take into account the
cost of suboptimal paths. (1), (4), and (5) in Table 3 show
the results of various γ and it shows the best performance
at γ = 0.1. The results demonstrate that considering proper
suboptimal paths with the optimal path helps to learn repre-
sentations.

Hard Negative Mining. As mentioned in Section 4.4 of
the main paper, VT-TWINS also implicitly mines the hard
negatives by applying InfoNCE loss to the S2DTW. Fig-
ure 3 is an example of positive and negative clip-caption
pairs of a particular series of clips. Figure 2 shows the
pairwise distance and the Soft-DTW path of Figure 3, i.e.,
Figure 2a shows the positive pairs (left) of Figure 3 and
Figure 2b shows the negative pairs (right) of Figure 2b.
There are several alignments between positive clip-caption
pairs. However, some negative captions are also aligned
with the clips, like the ones including ‘sliced apple’ and
‘apple juice’ from the negative captions. VT-TWINS au-
tomatically aligns the clips with the negative captions and
implicitly mines the hard negative pairs, i.e., the clips in-
cluding ‘sliced apple’ repels the captions including ‘apple
juice’ more than the other ones.



CL CD γ HMDB UCF YC2 MV CT

(1) 4 S 0.1 42 72.1 12.5 17.4 28.2

(2) 4 C 0.1 38.6 68 6.8 9.7 22.5

(3) - S 0.1 5.7 7.9 0 0.3 11.9

(4) 4 S 0.01 33.1 62.1 10.4 13.8 21.8
(5) 4 S 1 33.7 57.8 9.8 12.7 24

Table 3. Ablation Studies. We report accuracy on the HMDB1and
UCF2, R@10 on the YouCook23(YC2) and MSR-VTT4(MV),
and CTR on the CrossTask (CT) to evaluate the contribution of
the followings: contrastive learning scheme (CL), cosine distance
(CD), and smoothing parameter (γ). (1) is our proposed model,
VT-TWINS. For CD, we evaluate the following strategies: S:
shifted cosine distance (ours), and C: original cosine distance.

(a) Positive Pairs.

(b) Negative Pairs.

Figure 2. Soft-DTW Path of Positive Pairs and Negative Pairs.
The red box and blue box of (a) are the aligned pairs between
positive clip-caption pairs. The orange box of (b) is the aligned
pairs between negative clip-caption pairs.

C. Further Discussions
C.1. Negative Societal Impacts

This paper introduces a multi-modal self-supervised rep-
resentation learning algorithm using a large-scale video
dataset, HowTo100M5, whose capacity is about 13TB.
Training the HowTo100M requires a lot of GPUs or TPUs
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and they emit CO2 which is the main cause of environmen-
tal pollution including global warming.

C.2. Limitations and Future Directions
We propose a multi-modal self-supervised representa-

tion learning algorithm between video and text. Applying
our framework to other modalities and extending it beyond
two modalities (e.g., audio) can be interesting. In addition,
applying it to the transformer-based [11] encoder as a back-
bone model is also promising. For example, our proposed
framework can be applied to the cross-modal transformer-
based encoder, and it will learn more powerful representa-
tions in multi-modal settings. Also, as mentioned above,
a lot of computing resources and time are wasted to train
our model. We need to lighten our model so that it is used
in various fields and domains. These problems are left for
future works.
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