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A. Inverse Color Filtering for POLED dataset
We have discussed the inverse color filtering for im-

ages from the POLED dataset as a pre-process reversing the
color shift in the training dataset. The measured average X,
Y, and Z filter values on the training images with respect to
the pixel position ηxyz(m,n) are obtained by

ηxyz(m,n) =
1

N

N∑
i=1

yixyz(m,n)

xi
xyz(m,n)

, (1)

and its graphical results are shown in Fig. A1. This sug-
gests that the transmission properties of wavelengths in the
OLED layers are spatially variant. We have two options to
obtain the inverse color filter: one is measuring pixel-wise
filters ηlxyz ∈ Rh×w×3(XY Z) by (1), and the other is obtain-
ing a global filter ηgxyz ∈ R3(XY Z) which can be expressed
as

ηgxyz =
1

h× w

h∑
m=1

w∑
n=1

ηlxyz(m,n), (2)

which is equivalent to equation (9) in the main body. We
performed two experiments applying local ηlxyz and global
ηgxyz inverse filtering, and empirically found that the per-
formance of global filtering is better. Local inverse filtering
can remove the pixel artifact which occurs at static pixel
position and can significantly improve initial color differ-
ences. However, it tends to remove edge information from
images, resulting in low image quality in terms of both per-
pixel differences and perceptual quality. A further examples
of inverse filtering are shown in Fig. A2.

B. Analysis with Guided Filter
Our 1D affine transform connection is associated with a

local linear model in the guided filter [3, 11], which trans-
fers the high-frequency structure from the degraded image
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Figure A1. Average XYZ of measured color filter on the pixel po-
sition (m,n) ηxyz(m,n) obtained by comparing UDC and ground
truth images in the training images from POLED dataset (see equa-
tion (1)). It shows that the color transmission of thin-film layers in
OLEDs is spatially variant.
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(a) (b) (c)

Figure A2. An example of the use of inverse color filtering to pre-process an image from the POLED dataset: (a) UDC image, (b) after
inverse color filtering, and (c) ground truth.

to the output of the HFR branch. The 3D affine transform
connection in the LFR branch is its extended version which
constrains the solution space to color adjustment and low-
frequency reconstruction, in which low-frequency features
are transferred to the output. As we discussed in the main
body, linear transformations give the network inductive bias
to change styles or remove noise while preserving the struc-
ture of the guided image.

Analogies to the affine transform approach include the
deep-learning method for style transfer [5, 10], in which
adaptive instance normalization [4] changes the style of an
image while preserving its structure. Similarly, SPADE [6]

synthesizes a photo-realistic image with its structure taken
from a segmentation map, using linear transformation nor-
malization. Our affine transform connection can be viewed
as changing a corrupted style to a clean style, while main-
taining the structural information of the image.

C. Detailed Network Branches

The components in our BNUDC network are presented
in Fig. A3. In the high-frequency reconstruction network,
We use the flat network which maintains the resolution of
the input image in the feature space, and also use a par-
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Figure A3. Network branches: (a) the HFR network NH composed
of original-resolution blocks of flat networks; (b) the LFR NL

which is a U-net [7]; and (c) a unit residual block which uses par-
allel dilated convolution layers.

allel dilated convolution residual block [1, 9]. In the low-
frequency reconstruction network, we employ the U-Net
with a skip up-sampling scheme.

During training the depth of the feature space in the HFR
and LFR network is 72 and 36 channels respectively. The
HFR network consists of three full-resolution blocks, each
of which contains six smoothed dilated residual blocks. The
LFR network has fifteen smoothed dilated residual blocks
(see Fig. A3).

D. Additional Results
We provide additional experimental results in Fig. A4,

A5, A6, A7, A8, A9 and A10, and refer to the captions for
the information.
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Figure A4. Visualizations of intermediate images from the HFR and LFR branches on an example from the POLED dataset. In each images
group, the top row shows the UDC image (left) and the same image after pre-processing (right); the second row show the results from the
HFR (left) and the LFR network (right); and the last row contains the ground-truth image (left) and the restored image (right).
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Figure A5. Example images from the POLED dataset restored by four different networks. In each image group, the first row contains the
original UDC images, reconstructed images obtained using MSUNET [13] and DAGF [9]. The second row shows the restored images
obtained by PDCRN [8], our BNUDC and the ground truth image.
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Figure A6. Visualizations of intermediate images from the HFR and LFR branches on an example from the TOLED dataset. In each images
group, the top row shows the captured UDC image, the second row show the results from the HFR (left) and the LFR network (right); and
the last row contains the ground-truth image (left) and the restored image (right).
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Figure A7. Example images from the TOLED dataset restored by four different networks. In each image group, the first row contains the
original UDC images, reconstructed images obtained using MSUNET [13] and IPIUer [12]. The second row shows the restored images
obtained by BAIDU [12], our BNUDC and the ground truth image.
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Figure A8. Six example images from the SYNTH dataset. The first column contains the original UDC images. The next two column
contains the intermediate results obtained by the HFR and LFR branch. Subsequent columns shows the restored images obtained using our
BNUDC, ground truth images, and restored images by DISCnet [2]. (Best viewed in digital version with zoom.)
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Figure A9. Task separability. The first column shows images obtained with a skip connection in the LFR branch; the second column shows
images obtained using a 1D affine in the LFR branch; and the third column shows images obtained using a 3D affine transform in the LFR
branch. Each column contains (from top to bottom) results from the HFR, LFR, and the final restored image.
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Figure A10. Task separability. The first column shows images obtained with a skip connection in the LFR branch; the second column shows
images obtained using a 1D affine in the LFR branch; and the third column shows images obtained using a 3D affine transform in the LFR
branch. Each column contains (from top to bottom) results from the HFR, LFR, and the final restored image.


