
Text2Pos Supplementary Material

In this supplementary material, we provide additional in-
formation to further understand our proposed coarse-to-fine
language-based localization model – Text2Pos. In Sec. 1,
we provide more details about our KITTI360Pose dataset
such as the query position sampling mechanism and the
clustering and describing of scene object instances. Next,
we describe implementation details about the cell database
construction, data augmentation, model training and Point-
Net++ pre-training in Sec. 2. We further present thorough
ablation experiments to study the impact of data variations
on the localization performance in Sec. 3. There we also
prove our concept of utilizing street names (when available)
to better overcome the ambiguity in descriptions caused by
the fact that many locations have semantically similar or
equal surroundings. Finally, Sec. 4 shows qualitative re-
sults of top-k candidate cells retrieved during the coarse lo-
calization stage. We will release our code upon the paper’s
acceptance.

1. KITTI360Pose Dataset Details

Query position sampling and description. To obtain
query positions, we first sample equidistant locations along
the original KITTI360 [5] capturing paths. For each of these
trajectory locations, we then sample a number of random
nearby positions that are up to 1/2 cell-sizes away from it.
We sample 4 positions for the baseline and present detailed
studies on the impact of training our baseline on a larger
dataset that samples more query positions (per trajectory lo-
cation) in Tab. 3.

As detailed in the main document, a query position is de-
scribed based on the set of its surrounding object instances,
and thus we discard a sampled query position if there are
insufficient instances, i.e. Nh < 6 in practice, in its vicinity.
Given a query position with enough nearby instances, we
can select the subset of the instances (6 instances in prac-
tice) to describe the query using three different strategies:
(i) simply selecting the closest-by instances, (ii) choosing
the instances that cover as many different directions (point-
ing towards the query position) as possible and (iii) picking
instances with as many different classes as possible. If two
or more of these strategies yield the same set of instances,
the duplicates are omitted.

Object clustering. In order to also incorporate stuff class

objects into our descriptions, it is necessary to cluster them
into separate instances, e.g., clustering one large sidewalk
object covering the entire scene into separate instances left
and right of a query position. Since we did not find a way
to achieve such a clustering globally for a whole scene, we
decide to cluster a stuff-class object locally for a given cell,
where we first ignore those points of the complete stuff ob-
ject that are not contained in that cell. For its points in-
side the cell, we then cluster them into multiple separate
instances using the DBSCAN [2] and retain the clustered
instances that contain enough points (250 in practice).

Dataset Statistics. As described above, we can obtain
datasets of different scales by varying the number of sam-
pled positions at each trajectory location. In Tab. 1, we
show statistics about the number of query positions, de-
scriptions and covered scene area of the two Kitti360Pose
dataset versions generated by sampling 4 and 8 positions
per trajectory location.

Challenges. Notice, the mapping between a query descrip-
tion and a target position is often not unique, since there ex-
ist many positions with semantically similar or even equal
surroundings. Such ambiguous nature makes the task of
text-based outdoor localization very challenging. Com-
pared to the indoor environment which is rich in semantics
of various objects such as table, sofa, chair and cup [1],
outdoor scenes have fewer static objects, yet more compli-
cated semantic cues that are mainly based on stuff classes,
such as tree, vegetation, fence and road. Those stuff -based
semantic features are highly repetitive for real-world large-
scale outdoor scenes, which is also verified by our statistics
in Tab. 1, which show that only a small fraction of the gener-
ated descriptions is actually unique. Therefore, our method
is designed to endure such ambiguity by retrieving several
candidate cells and then performing more refined pose esti-
mations for each of them. In future work, we expect to re-
duce the ambiguity by incorporating the use of unique land-
marks like street names or named buildings, which can be
easily integrated into our general coarse-to-fine localization
pipeline. We present our experiment in Tab. 4 as a proof of
concept, where we manage to utilize simulated street names
to improve our localization performance up to 20 percent
points.



Split # Scenes Area [km2] # Positions # Descriptions # Unique Desc.

4 sampled position per trajectory location

Training 5 11.59 9961 28807 601
Validation 1 2.25 1116 3187 416
Testing 3 2.14 3932 11505 518
All 9 15.98 15009 43499 629

8 sampled position per trajectory location

Training 5 11.59 19688 57482 612
Validation 1 2.25 2224 6405 435
Testing 3 2.14 7747 22878 542
All 9 15.98 29659 86765 641

Table 1. Kitti360Pose dataset statistics

2. Implementation Details

Cell database. Our method relies on a database of cells
to first retrieve top-k candidate cells which potentially con-
tain our target position and then perform more accurate fine
localization within those cells. To construct a database of
cells that can fully cover the scene area, we use a sliding
window with size W and sliding stride S to sample the cells
along both the horizontal and vertical directions. We em-
pirically fix the cell size to be W = 30m which usually
covers enough instances for our experiments and we use a
stride of S = 1/3 × W . After the raw sampling, we fur-
ther reject cells that have not enough objects inside to de-
scribe a position, e.g. a cell with mostly empty space. This
leads to a database of 11259/1434/4308 cells for the train-
ing/validation/testing scene split and in total 17, 001 cells
for the whole dataset.

In-cell instances. For fine localization, we cut-off or
pad in-cell instances to keep the same number of instances
per cell to allow mini-batching in the matching module.
We consider each cell to contain 16 in-cell instances, i.e.,
Np = 16 for both training and inference, which has led to
the most promising performance across different data set-
tings in our experiments. In the case of too few instances,
we pad dummy instances of 10 points which have black
color and random point coordinates close to zero so that
they are easily recognized by the model. In addition, we
normalize the coordinates of in-cell instances w.r.t. the size
of their belonging cell such that each coordinate value is
∈ [0, 1], which aids the regressor’s training stability.

Query description grounding. To learn the task of text-to-
cell retrieval, we need to ground a query position descrip-
tion onto a ground-truth (GT) cell. We define a GT cell
to be the cell in the database that contains the described
position and whose center is closest to the described po-
sition. To learn the task of hint-to-instance matching, we
need to further identify the GT correspondences between

the query hints and the in-cell instances within a candidate
cell. For instance-class instances, the hint-to-instance cor-
respondences are established using GT instance IDs from
the original KITTI360 dataset. Notice, stuff -class hint in-
stances were clustered using a synthetic cell centered on the
query position, which means the same instance might ap-
pear in a slightly different position within a retrieved cell
since the query position can be anywhere inside that re-
trieval cell. Therefore, to match between a stuff -class hint
instance and a point-cloud in-cell instance which are clus-
tered w.r.t. a synthetic cell and a retrieval cell, we compare
their semantic class IDs and the two direction vectors point-
ing from the query position to those two instances. We con-
sider them as a match, if they have the same semantic class
and their direction vectors are close enough.

Data augmentation. During training, we also use data
augmentations for the point cloud instances and the pose
descriptions to aid our model performance. In the instance
augmentation, we randomly rotate the instance across the
z-axis during training and normalize-scale all its points to a
[0, 1] interval during the training and inference. For the de-
scription augmentation, we (i) randomly shuffle the order
of the hints that make up a query description and (ii) ran-
domly flip cells horizontally and/or vertically by flipping
the location of the pose and instance centers in each cell
and changing the corresponding words in the description.
The description augmentations are not used when training
the refinement module.

Text2Pos model training. We train our model using five
training scenes and use one scene for model validation. For
coarse localization, we train the retrieval model using an
Adam optimizer [3] with batch size 64 and learning rate
0.001 for at most 64 epochs. We set the margin parameter
α in the pairwise ranking loss (Eq. (1)) as α = 0.35. For
fine localization, we train the matching module and regres-
sion jointly using an Adam optimizer with batch size 32 and
learning rate 0.0003 for 16 epochs.



Stride # Cells Localization Recall (ϵ < 5/10/15m)
(val split) k = 1 k = 5 k = 10

S = 3m 15899 0.22/0.35/0.41 0.41/0.53/0.58 0.52/0.63/0.68
S = 5m 5724 0.18/0.29/0.35 0.39/0.53/0.57 0.51/0.64/0.68
S = 10m (baseline) 1434 0.14/0.25/0.31 0.36/0.55/0.61 0.48/0.68/0.74
S = 15m 629 0.09/0.19/0.25 0.25/0.46/0.54 0.35/0.61/0.70
S = 20m 362 0.07/0.14/0.19 0.19/0.37/0.45 0.25/0.49/0.59

Table 2. Ablation on varying sampling stride for cell database construction.

Positions Localization Recall (ϵ < 5/10/15m)
(per traj. loc) k = 1 k = 5 k = 10

4 (Baseline) 0.14/0.25/0.31 0.37/0.54/0.60 0.48/0.68/0.73
8 0.16/0.28/0.33 0.39/0.57/0.63 0.52/0.70/0.75
12 0.16/0.29/0.35 0.41/0.60/0.66 0.52/0.72/0.77
16 0.16/0.28/0.34 0.39/0.56/0.62 0.51/0.70/0.75

Table 3. Training on larger dataset. We generate a larger dataset
for training by varying the number of positions sampled at every
trajectory location.

PointNet++ pretraining. We pre-train our PointNet++ [4]
backbone for the point cloud classification on KITTI360
and use it to initialize the two instance encoders used in
the coarse and fine localization stages. We aggregate the
objects from all our database-side cells into a training set of
159, 828 objects from 22 classes and again use the Adam
optimizer [3] with a learning rate of 0.003 and a batch size
of 32.

3. More Ablation Studies
In the main document, we have presented several abla-

tion studies that focus on analysing the localization perfor-
mance of each component of our proposed Text2Pos model,
i.e., the coarse retrieval component and the fine matching
component. In this section, we first complete the results of
the cell stride ablation (that has been presented in Tab. 1 of
the main paper). And we further provide an additional ab-
lation to study the impact of training on a larger version of
our dataset on the localization performance, to thoroughly
understand our proposed method. Finally, we confirm our
hypothesis that our localization performance can be further
improved when provided with additional landmarks infor-
mation such as street names.

Full results on sliding stride ablation. We variate the
stride size for our database-side cells between values de-
creasing from S = 20m down to 3m, while keeping a fixed
cell size of 30m. As shown in Tab. 2 where we mark the best
recall with bold, our baseline setting S = 10m leads to the
best performance at 10/15m error thresholds when using
top-5/10 candidates. For 5m errors or top-1 candidates, the
recall steadily increases for smaller strides, e.g., from 7% up
to 22% recall for a top-1 candidate prediction within a 5m
error threshold. However, we consistently observe a larger

performance drop (if any) when going from S = 15m to
10m than going from S = 10m to 5m. While, S = 3m
is the most promising one for the finest error threshold, it
leads to less efficient computation in both memory and run
time due to the large amount of generated cells (11 times
more than in the 10m setting). For our current implemen-
tation, the clustered stuff instances are pre-computed and
stored separately for each cell, meaning it takes approx-
imately 9 GB of memory to store 15k cells (0.6MB per
cell) just for the validation split. Another option to avoid
big memory consumption is to perform instance clustering
on-the-fly during training and inference, however, loading
plus clustering of all cells in the validation split already
takes around 50 minutes (0.2s per cell). This also prevents
us from pushing the stride to more extreme settings, e.g.,
S = 1m where one needs to handle approximately 135k
cells for the validation split. To maintain the feasibility of
performing intensive evaluations, we choose our baseline
setting as S = 10m. This gives us the best trade-off be-
tween computational efficiency and localization recall, as
we consider further technical engineering to improve the
computational overhead coming from instance clustering
out of the scope of this research, leaving it to future work.

Using a larger dataset. As described before, it is possi-
ble to increase our dataset scale by sampling more poses
around each trajectory location. In our final experiment, we
vary this scale by sampling 8, 12 and 16 poses per location
and train our coarse and fine models on these larger datasets.
To maintain the comparability, we evaluate models trained
under varying settings on the same validation set that is ob-
tained using the baseline configuration. As shown in Tab. 3,
localization recall improves incrementally by training on a
larger dataset, acquired by sampling poses from 4 to 12 po-
sitions per trajectory location. However, the performance
starts to decrease on the 16-positions sampling configura-
tion, which indicates a limit of performance improvement
by sampling denser query positions. Our intuition is that
the increase in sampling density leads to increases in the
ambiguity of the mapping between a query description and
a position, which starts to harm the learning of the global
mapping on the cell level and the local mapping on the in-
stance level. We note that we chose the sub-optimal setup
with 4 poses per location as our experimental baseline due



Variant Localization Recall (ϵ < 5/10/15m)
k = 1 k = 5 k = 10

Text2Pos (coarse) 0.10/0.23/0.30 0.27/0.52/0.60 0.37/0.65/0.72
Text2Pos (coarse + fine) 0.14/0.25/0.31 0.37/0.54/0.60 0.48/0.68/0.73

Text2Pos + street names (coarse) 0.15/0.34/0.45 0.40/0.69/0.79 0.52/0.83/0.89
Text2Pos + street names (coarse + fine) 0.19/0.36/0.46 0.47/0.72/0.80 0.61/0.85/0.90

Table 4. Using street names as additional localization cues.

to time constraints, but will publish our results based using
a more optimal sampling in our camera ready version.

Using street names as additional cues. As mentioned
in the main paper as well as Sec. 1, our method can po-
tentially use additional information such as nearby land-
marks or street names to reduce the inherent cell ambigu-
ity caused by places with semantically similar surroundings.
To confirm this hypothesis we perform an additional exper-
iment in which we use simulated street names as our addi-
tional cues to improve our localization recall. To simulate
street names, we split our validation scene into nine separate
streets as shown in Fig. 1 (each street in a unique color). All
database-side cells and query-side poses are then assigned
to their corresponding streets. During inference, we still
perform coarse retrieval as usual, but additionally reject all
cells from incorrect streets before taking the top-k retrievals.
Hence, this experiment serves as a ”semi-oracle” for the
coarse retrieval. As Tab. 4 shows, using the simulated street
names (as prior ground truth) boosts the performance of our
baselines up to 20 percentage points. With this improve-
ment, our full pipeline is able to localize 19% of the queries
with top-1 retrieval within a strict error radius of ϵ = 5m.
If we consider all top-10 retrievals, it then manages to lo-
calize 61/85/90% of the queries at different error thresh-
olds of 5/10/15m. Therefore, our experimental results in-
dicate that additional text-based cues like street names are
valuable information to complement the challenge of de-
scription ambiguity. We believe our proof of concept shows
this direction is worthy of further research investigation to
properly incorporate existing landmark information such as
street names, zip codes or named buildings, into text-based
localization pipelines for performance improvement.

4. Qualitative Text-to-Cell Retrieval Analysis
Finally, we show examples of the top-3 candidate cells

retrieved by our text-to-cell retrieval model in Fig. 2. As we
can see in both the successful (left) and failure cases (right),
top-3 retrieved cells often exhibit high similarity in seman-
tics to the query cell and to each other, yet can be more than
100m apart, which again highlights the inherent ambiguity
of large-scale outdoor text-based localization. As a conse-
quence, as shown in the 2nd successful example (left), the
correct cell is retrieved but ranked lower (as the 3rd) than
the other two candidates which are much further away. Fur-
thermore, the 2nd failure example (right)) shows that the
top-1 candidate is indeed a close-by candidate yet will not

be considered as a correct one according to our manual 10m
threshold, meaning the pose error is too coarse. This also
suggests the need of another refinement step to improve the
localization recall, which will turn such a case into a suc-
cessful localization.

References
[1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,

Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
2017. 1

[2] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, 1996. 1

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015. 2, 3

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 3

[5] Jun Xie, Martin Kiefel, Ming-Ting Sun, and Andreas Geiger.
Semantic instance annotation of street scenes by 3d to 2d label
transfer. In CVPR, 2016. 1



Figure 1. Simulated streets. Overview: We split our validation scenes into nine hypothetical streets marked with different colors. Zoom-in:
Each colored square placed on top of a street represents a retrieval cell belonging to that street area.



Query Top-1 Top-2 Top-3 Query Top-1 Top-2 Top-3

Semantic 
Classes

Building

Pole

Traffic light

Traffic sign

Parking

Sidewalk

Vegetation

Terrain

Road

Wall

Garage

Successful Cases Failure Cases

Figure 2. Examples of the top-3 retrieved cells. In the left part of the figure, we show 3 successful examples where the correct cell is
within the top-3 candidates. In the right part, we show 3 failure cases where none of the top-3 candidates is the correct one. Each example
consists of the dataset cell that is closest to the query pose (the 1st column) and the top-3 retrieval cells, where the in− cell instances are
colored by their semantic classes (the top row) and RGB values (the bottom row). We plot the mapping from semantic colors to class labels
in the center of the figure. We further mark the correct cells with green borders and wrong cells with red borders, where we consider a cell
to be correct if its center is at most 10m away from the query position (the red dot in the query cell).


