
Efficient Classification of Very Large Images with Tiny Objects

Supplementary Material

A. Memory Cost Analysis
In Memory requirements Section 2.2, we empirically an-

alyze the memory requirements of the proposed Zoom-In
network and the closely related ATS model. Below we
study the memory usage of these models using the colon
cancer data.

The memory usage for the one-stage ATS and the
proposed two-stage model are O(s2HW + Nh2w2) and
O(s21HW+N ′s21s

2
2HW+Nh2w2) respectively. Notations

is inherited from the main paper, Zoom-In Network Sec-
tion 2.2. In the colon cancer experiment, s = 0.2, s1 = 0.1,
s2 = 0.2 and N = 10. Then, if we want the memory us-
age order for the two-stage model to be smaller than that of
the one-stage model, we set N ′ < 7.5. In the experiment,
N ′ < N/2 when the two-stage model has converged. It
should be noted that in the beginning of training, the ini-
tial attention map α is approximately uniform because the
weights of aΘ(·) are initialized at random. The number se-
lected tiles N ′ is close to N , which implies that the mem-
ory consumption of the two-stage model is slightly larger
than the one-stage model. However, after the attention net-
work aΘ(·) is optimized, the number of selected tiles N ′

drops dramatically. At which time, the proposed two-stage
model consumes much less memory than one-stage model
as shown in Figure 4. Note that for very large images (gi-
gapixel in size), the number of selected tiles is much smaller
than the size of sample space |C|, which means that even
at the beginning of training, the two-stage model does not
need to instantiate all tiles in an image and thus requires
substantially less memory than the one-stage model (see
right plot in Figure 4).

The above memory usage analysis of input entries can be
reflected on the counts of FLOP, since the FLOPs is dom-
inated by the size of the feature maps and model param-
eters, that is computed in the following way in agreement
with [10, 36]:

FLOPs = Cin × k2 ×Hout ×Wout × Cout (10)

where Cin is the number of channels of the input tensor,
k2 is the size of the convolution kernels in this layer, Hout,
Wout and Cout are the heights, width and number of chan-
nels of the output tensor.

B. Derivations
Below we complete the proof for the equation (8)

in the main paper, by showing the equivalence be-
tween Ec′∼bΘ(V (x,s2,c))[fΘ(Ts2(Ts1(x, c), c

′))] and

∑
c′∈C′

∑
i ̸=c′ β

c
c′

βc
i

1−βc
c′
(βc

c′fΘ(Ts2(Ts1(x, c), c
′) + (1 −

βc
c′)fΘ(Ts2(Ts1(x, c), i)) as follows,

∑
c′∈C′

∑
i ̸=c′

βc
c′

βc
i

1− βc
c′
(βc

c′fΘ(Ts2(Ts1(x, c), c
′) + (1− βc

c′)fΘ(Ts2(Ts1(x, c), i))

=
∑
c′∈C′

[
∑
d∈C′

βc
c′

βc
d

1− βc
c′
(βc

c′fΘ(Ts2(Ts1(x, c), c
′) + (1− βc

c′)fΘ(Ts2(Ts1(x, c), d))−

βc
c′

βc
c′

1− βc
c′
(βc

c′fΘ(Ts2(Ts1(x, c), c
′) + (1− βc

c′)fΘ(Ts2(Ts1(x, c), c
′))]

=
∑
c′∈C′

[
βc
c′
2

1− βc
c′
fΘ(Ts2(Ts1(x, c), c

′) +
∑
d∈C′

βc
dβ

c
c′fΘ(Ts2(Ts1(x, c), d)

− βc
c′
2

1− βc
c′
fΘ(Ts2(Ts1(x, c), c

′)]

=
∑
c′∈C′

βc
c′

∑
d∈C′

βc
dfΘ(Ts2(Ts1(x, c), d)

=
∑
d∈C′

βc
dfΘ(Ts2(Ts1(x, c), d)

= Ec′∼bΘ(V (x,s2,c))[fΘ(Ts2(Ts1(x, c), c
′))].

(11)

C. Supplementary Figures

Here we present the supplementary figures mentioned in
the main paper.

Figure 5 is the error bar plot for the results of colon can-
cer dataset.

Figure 6 illustrates the interpretability of the proposed
attention model for the Colon Cancer, NeedleCamelyon,
Traffic Sign Recognition, fMoW and Camelyon16 experi-
ments. We find that areas of high attention of the Zoom-
In network and extracted ROI patches are highly consistent
with the ground-truth, manually annotated, segmentation
masks.

Figure 7 quantitatively examines the quality of the atten-
tion of the Zoom-In network. The plots illustrate the cor-
relation of the attention weights generated by the Zoom-In
network with the ground-truth metastases-to-tile ratio ob-
tained from pixel annotations. The Spearman correlation
coefficient for all the tiles with pixel-level annotations is
ρ = 0.3570, indicating a good agreement. Interestingly,
from the plot, we see that many tiles contain different size
of ROIs but has the same magnitude of attention weights,
indicating that the attention mechanism seems to attend to
the presence of ROIs but not the proportion of ROIs in a
tile.

D. Details of Generating NeedleCamelyon
Dataset

We present the details of the NeedleCamelyon dataset
not included in the main paper. We first split the unique
metastases in the original Camelyon16 dataset for positive

Figure 4. GPU memory usage (y-axis) versus training epoch (x-axis). We plot the GPU memory usage of the Zoom-In network and the
one-stage ATS for the (left) colon cancer dataset, (middle) NeedleCamelyon dataset, and (right) Camelyon16 dataset.

Figure 5. Standard deviations (error bars) for the results on the
colon cancer dataset. Each error bar is obtained as the result of the
5 repetitions with the same training hyper-parameters and different
random seeds. Standard deviations for CNN, ATS and Zoom-In
network are 1.2%, 1.4%, 2.6% respectively. We see that though
the variation of the Zoom-In network is larger than for the CNN
and ATS, the differences, accounting for variation are still signifi-
cant in favor of the proposed model.

samples in training set, validation set and test set. The num-
ber of unique metastases region for training set, validation
set and test set are 122, 41 and 41, respectively. Then we
crop these metastases area to build the NeedleCamelyon
dataset. Negative images are taken by randomly cropping
normal whole-slide images and filtering image crops that
mostly contain background. We ensure the class balance by
sampling an equal amount of positive and negative crops.
Finally, we obtain 6000 crops for training, 2000 crops for
validation and 2000 crops for testing. Each crop has a size
of 1024× 1024.

E. Details of the Functional Map of the World
Subset

In order to facilitate the experiments on fMoW dataset,
we extract a subset from the original fMoW dataset. We ran-
domly choose 10 categories from the original 63 categories.
The chosen categories are airport, amusement, aquaculture,
archaeological, barn, border, burial, car, construction and
crop. Then, we randomly select 1,500 high-resolution im-

ages from the training set within the above classes as our
training set and use all data belongs to the above categories
in the validation set of orginal fMoW as our test set.

F. More Implementation Details of Attention α
and β

Here, we describe more implementation details of atten-
tion α and β not covered in Zoom-In Network Section 2.

In order to avoid additional computations on overlapped
area in the image, each value in the first stage attention α
represents the attention on a unique non-overlapped tile in
the whole image. The tile sizes are 250×250 for colon can-
cer, 256 × 256 for NeedleCamelyon, 250 × 250 for Func-
tional Map of the World and 3200× 3200 for Camelyon16
dataset. For the second stage attention β, the attention maps
are computed same as [20]. Each attention value in β is the
attention of each input entry.

G. Complete Training Details
Here, we describe the training details not included in Ex-

periments Section 4, such as learning rate, parameters of the
optimizer, etc.

For the colon cancer dataset, we train our Zoom-In net-
work using the Adam optimizer with a batch size of 5, β1

of 0.9, β2 of 0.999 and a learning rate of 0.001 for 100
epochs. We use N of 10 and λ of 1e−5. The contrastive
learning strategy kicks in after training for 10 epochs.

For NeedleCamelyon dataset, we set the learning rate to
0.0001, N to 30 and training epochs to 150. Other settings
are the same as for the colon cancer experiment.

For Traffic Sign Recognition, we set the learning rate to
0.001, batch size to 32, N to 10 and training epochs to 150.
Since the number of samples for each class is imbalanced,
we use a weighted cross-entropy loss that the weights for
class empty, 50 limit sign, 70 limit sign and 80 limit sign are
[0.1843, 2.3639, 1.5183, 3.1653]. Other settings are con-
formed with the colon cancer experiment.

For Functional Map of the World dataset, we set the
learning rate to 0.0001, batch size to 32, N to 30 and train-

Figure 6. Intermediate results of the proposed Zoom-In network.
For each row, we exhibit the visualization of a) colon cancer, b)
NeedleCamelyon, c) Traffic Sign Recognition, d) fMoW and e)
Camelyon16 datatsets. In each panel we show the downsampled
original image, the ground truth ROI mask, the attention masks,
the extracted tiles and sub-tiles with the highest first-stage and
second-stage attention respectively.

ing epochs to 200. Other settings are the same as for the
colon cancer experiment. For EfficientNet-B0, the input im-
ages are resized to 896×896 and all other hyper-parameters
are consistent with [36].

For Camelyon16 dataset, we set the learning rate to
0.0001, N to 100 and training epochs to 200. Other settings
are the same as for the colon cancer experiment. For the

baseline models, we only use 5× magnifications for CLAM
and MIL. For MRMIL, we use 5× magnifications at the first
stage and 20× magnifications at the second stage.

All of our experiments ran on an NVIDIA TITAN Xp
12GB with CUDA version 10.2.

H. Time/Memory-Accuracy Trade-off
In our model, the main hyper-parameter that varies time

and memory consumption is the sample size (N). Although
the time/memory - accuracy trade-off can be inferred from
the ablation study of sample size (N) in Table 4, we show
additional details concerning the time-memory trade-off in
the following table:

Table 3. Time/Memory-Accuracy Trade-off of Zoom-In Network
compared with ATS in the colon cancer dataset experiment.

Sample Sze Accuracy Memory Time
Method (N) (%) (Mb) (ms)

5 93.2 2.43 3.04
Zoom-In Network 10 78.0 2.55 3.20

50 79.9 5.03 4.33
ATS 10 90.7 15.83 2.81

50 90.7 25.77 4.03

I. Ablation Study
In Table 4, we present and ablation study to evaluate the

effects of the entropy regularization λ, sample size N and
contrastive learning in our Zoom-In network. We examine
these hyper-parameters on the colon cancer dataset to show
the effects of varying N and λ, as well as to demonstrate
the usefulness of the contrastive learning objective. Then,
we further justify the contribution of contrastive learning on
NeedleCamelyon and Camelyon16 datasets a similar abla-
tion strategy.

Table 4. Ablation study results of λ, N and using contrastive
learning. The first, seventh, and ninth rows are the standard hyper-
parameter settings used in our experiments and the others are se-
lected to show performance variations for different settings.

Dataset Entropy Sample Size Contrastive Test Accuracy
Regularization (λ) (N) Learning (%)

Colon Cancer

1e-5 10 Yes 95.0
0 10 Yes 94.0

1.0 10 Yes 95.0
1e-5 10 No 94.0
1e-5 5 Yes 93.2
1e-5 50 Yes 96.0

NeedleCamelyon 1e-5 30 Yes 76.0
1e-5 30 No 74.3

Camelyon16 1e-5 100 Yes 81.3
1e-5 100 No 80.6

J. Limitations: when there is no discriminative
information at lower scales

We also examine the behavior of the proposed Zoom-In
network on NeedleMNIST dataset introduced by [37]. In

Figure 7. Correlation of attention with ROI abundance, where the x-axis shows the attention weight αc on each tile and the y-axis
corresponds to the ratio of the ROI in a tile, i.e., the franction of annotated ROI relative to the tile area. The plots are produced using
images from the Camelyon16 dataset, for which detailed per-pixel annotations for cancer metastases are available. A linear regression fit
is estimated for each image and overlayed on the plot to highlight the linear trend. (Top): 6 scatter plots created from 6 individual samples
of the Camelyon16 test set. (Bottom): scatter plot created from the attention weight points and metastases ratio points in the whole dataset.

this dataset, images with a size of 1024 × 1024 are gener-
ated via randomly placing 401 MNIST digits on a black im-
age canvas. The task for this dataset is to classify whether
there is a digit 3 in a given image. The positive samples
in this dataset contain only one digit 3 and 400 distract-
ing digits, that is, any MNIST digits belong to a set of la-
bels {0, 1, 2, 4, 5, 6, 7, 8, 9}. The negative samples in this
dataset have 401 distracting digits. We use the same split
for training, validation and test set as described in [37]. The
Zoom-In network fails to handle this dataset appropriately
because the discriminative information is washed out when
downsampling the view of the image. As shown Figure 8,
we can hardly recognize the ROI of the downsampled view
of NeedleMNIST images at scale s1 = 0.25, which means
that the attention network is unable to learn good attention
weights that correlate with the ROI. The test accuracy of
the Zoom-In network is 0.503, that is just slightly better
than random guessing. There are a few possible solutions
to address this problem: i) increasing the value of N , s1

or s2, at the cost of increased memory consumption; ii)
pre-processing the images by a network pre-trained on ROI
objects with labels (inferred from pixel-level annotations),
in order to obtain feature maps with higher ROI-to-image
ratio; and iii) randomly cropping the whole image so that
some input images have higher ROI-to-image ratio.

Figure 8. Left: downsampled views of one image in NeedleM-
NIST dataset at scale s1 = 0.25. Right: the corresponding ROI
mask.

Table 5. The architecture of the Zoom-In Network using a LeNet
Structure.

aΘ(·)
Layer Type

1 Conv(3, 1, 1, 8) + Tanh()
2 Conv(3, 1, 1, 8) + Tanh()
3 Conv(3, 1, 1, 1) + Tanh()
4 GlobalAveragePooling2D()
5 SoftMax()

bΘ(·)
Layer Type

1 Conv(3, 1, 1, 8) + Tanh()
2 Conv(3, 1, 1, 8) + Tanh()
3 Conv(3, 1, 1, 1) + SoftMax()

fΘ(·)
Layer Type

1 Conv(7, 1, 3, 32) + ReLU()
2 Conv(3, 1, 1, 32) + ReLU()
3 Conv(3, 1, 1, 32) + ReLU()
4 Conv(3, 1, 1, 32) + ReLU()
5 GlobalAveragePooling2D()

gΘ(·)
Layer Type

1 fc-nclass

K. Model Components

The components of the proposed Zoom-In network are
summarized in Figure 2. We consider the LeNet and
ResNet16 architecutres for the feature function fΘ(·). The
choice of LeNet is consistent to the one used in [16,42]. The
mapping fΘ(·) is implemented by a LeNet5-like architec-
ture; consistent to the one used in [16, 42]. We also consid-
ered a ResNet architecture to show our zoom-in strategies
is also compatible with modern network architectures. The
details of each subnetwork is listed in Table 5 and Table
6. In the table, the convolutional layer is denoted as "Conv"
and the kernel size, stride, padding and number of filters are
provided in the following brackets. "fc" means the fully-
connected layer and the output hidden units is provided after
the dash. nclass is the number of classes in the task that the
model is solving. "Tanh", "ReLU" and "SoftMax" repre-
sent the non-linear functions. "GlobalAveragePooling2D"
is the global average pooling operation in the spatial di-
mension of the tensors, functioning the same as https:
//www.tensorflow.org/api_docs/python/
tf/keras/layers/GlobalAveragePooling2D.
"ResBlock" is the standard ResNet block [15]. In the brack-
ets, we provide the kernel size, stride, and number of filters.

Table 6. The architecture of the Zoom-In Network using a
ResNet16 Structure.

aΘ(·)
Layer Type

1 Conv(3, 1, 1, 8) + ReLU()
2 Conv(3, 1, 1, 16) + ReLU()
3 Conv(3, 1, 1, 32) + ReLU()
4 Conv(3, 1, 1, 1) + ReLU()
5 GlobalAveragePooling2D()
6 SoftMax()

bΘ(·)
Layer Type

1 Conv(3, 1, 1, 8) + ReLU()
2 Conv(3, 1, 1, 16) + ReLU()
3 Conv(3, 1, 1, 32) + ReLU()
4 Conv(3, 1, 1, 1) + SoftMax()
5 SoftMax()

fΘ(·)
Layer Type

1 Conv(3, 1, 1)-32 + ReLU()
2 ResBlock(3, 1, 32)
3 ResBlock(3, 2, 32)
4 ResBlock(3,2, 32)
5 ResBlock(3,2, 32)
6 BatchNorm()+ReLU()
7 GlobalAveragePooling2D()

gΘ(·)
Layer Type

1 fc-nclass

The attention function aθ(·) in (1) is a smaller neural net-
work consisting of a three-layer convolutional network with
8 kernels and ReLu activations, followed by average pool-
ing and a softmax activation to obtain the matrix of attention
weights. The attention function bθ(·) in (4) is defined simi-
larly.

Finally, the classifier gΘ(·) is specified as a single fully
connected layer with sigmoid activation. The complete ob-
jective for the Zoom-In network is

L(y, x; Θ) = (12)
Lce(y, x) + Lcon(x, y = 1) + Ler(α) +

∑
c∈QLer(β

c),

where Lce(y, x) is the cross-entropy loss for the image-level
binary classification, Lcon(x, y = 1) is the contrastive loss
introduced above, and Ler(·) is the entropy regularization
loss for attention matrices α and {βc}c. The regulariza-
tion term [20, 34], Ler(p) = −λH(p) = λ

∑
i pi log(pi),

where H(·) is the entropy of a discrete distribution and λ is
the trade-off coefficient, is included in the overall objective

https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/GlobalAveragePooling2D

to prevent overly sparse attention matrices that may result
from overfitting or early converging during training.

L. Leveraging Pixel-Level Annotations
In some tiny object image classification datasets, pixel-

level annotations of the ROIs are provided; usually in the
form of manually-created segmentation masks. In Table 2,
we also report the results of our model using the pixel-level
annotations provided in the Camelyon16 dataset. Below
we describe how to leverage pixel-level annotations, when
available, to further improve the performance of the pro-
posed model.

Incorporating pixel-level annotations via pre-training
A good attention function and a feature extractor can be
obtained by training the model components as tile-level
classifiers [39, 48]. Specifically, assuming pixel-level an-
notations are available for (a subset of) the images, we
can obtain patches consistent in size and scale with view
V (x, s1) for aΘ(V (x, s1),) (of size h × w), V (x, s2, c)
for bΘ(V (x, s1, c)) (of size u × v), and with sub-tiles
Ts2(Ts1(x, c)c

′) for fΘ(·) (of size h2 × w2). Then, we can
pair them with labels obtained from the pixel-level annota-
tion so that the extracted patch is assigned y = 1 is any of
the annotation pixels is of a class different than background
and y = 0 if all the patch consists of background pixels.
Subsequently, we can proceed to pre-train aΘ(V (x, s1),),
bΘ(V (x, s1, c)) and fΘ(·). For the attention functions we
convert their output to a scalar prediction using a global
average pooling layer, and for fΘ(·) we use a single fully
connected layer similar to gΘ(·), but whose parameters we
discard after pre-training.

Incorporating pixel-level supervision Recently, [43] in-
troduced the body mask approach to guide the attention
map, by adding a mean squared error (MSE) loss between
the attention map for the positive class and the correspond-
ing body segmentation mask to improve the model perfor-
mance on person re-identification tasks, which is a detec-
tion task. The segmentation mask (pixel-level annotation)
is represented by a binary matrix of the same size as the
original image. If a pixel of the image is in a ROI (not
background), the corresponding value in the mask is set to
1, alternatively the value is set to 0 (background). Here, we
optimize both attention networks using pixel-level annota-
tions by adding MSE losses to the outputs of aθ(V (x, s1))
and bΘ(V (x, s2, c)). The MSE losses used in our experi-
ment are

Lα(α) =
∑

c∈C ||M(V (x, s1), c)− αc||22,
Lβ(β

c) =
∑

c′∈C′ ||M(V (x, s2), c
′)− βc

c′ ||22,
(13)

where M(·) is a function that returns the binary segmen-
tation mask value for a specific view and location of the

image, Lα is the MSE loss for α = aθ(V (x, s1)) and Lβ is
the MSE loss for βc = bΘ(V (x, s2, c)). These two losses
are added to (12) when pixel-level annotations are available.

M. Engineering Details for Camelyon16 Ex-
periment

In the Camelyon16 experiment, the input images have ir-
regular size and they are too large to be loaded into RAM
directly. The conventional coding implementation of neu-
ral networks are not compatible with the above situation.
Here, we briefly explain some engineering details about the
implementation of our Zoom-In model for Camelyon16 ex-
periment.

Irregular input size. To process the irregular size im-
ages with GPU parallelization, we implement a patch gen-
erator (e.g., tf.image.extract_patches) to load input images
patch by patch, also including the location information of
the extracted patches. When training the model, we use in-
dices to keep track of the location of these patches to ensure
that our model tracks them correctly;

Image cannot be directly loaded into RAM. OpenSlide
is a library that allows to access the local patches of a large
image (WSIs) in a variety of resolutions. Our patch gener-
ator integrates with OpenSlide, which allows us to access
the tiles for computing attentions without instantiating the
whole image.

It should be noted that our model is amenable to current
GPU computing frameworks like CUDA and we implement
our model in Pytorch.

N. Code and Data Availability
The source code of our project will be uploaded at

https://github.com/timqqt/pytorch-zoom-
in-network.

Colon cancer dataset can be downloaded at
https : / / github . com / MuniNihitha /
cancer - detection / tree / master / data /
CRCHistoPhenotypes_2016_04_28.

The source code to reproduce NeedleCamelyon and
NeedleMNIST dataset is at https://github.com/
facebookresearch/Needles-in-Haystacks.

Traffic Sign dataset is avaliable at https://www.
cvl.isy.liu.se/research/trafficSigns/.

Functional Map of the world(fMoW) dataset can be
found at https://github.com/fMoW/dataset.

Camelyon16 dataset can be found at https://
camelyon16.grand-challenge.org/.

https://github.com/timqqt/pytorch-zoom-in-network
https://github.com/timqqt/pytorch-zoom-in-network
https://github.com/MuniNihitha/cancer-detection/tree/master/data/CRCHistoPhenotypes_2016_04_28
https://github.com/MuniNihitha/cancer-detection/tree/master/data/CRCHistoPhenotypes_2016_04_28
https://github.com/MuniNihitha/cancer-detection/tree/master/data/CRCHistoPhenotypes_2016_04_28
https://github.com/facebookresearch/Needles-in-Haystacks
https://github.com/facebookresearch/Needles-in-Haystacks
https://www.cvl.isy.liu.se/research/trafficSigns/
https://www.cvl.isy.liu.se/research/trafficSigns/
https://github.com/fMoW/dataset
https://camelyon16.grand-challenge.org/
https://camelyon16.grand-challenge.org/

	zoom_in_net_CVPR_submission_camera_ready
	. Introduction
	. Zoom-In Network
	. Attention Sampling
	. Two-stage Hierarchical Attention Sampling
	. Efficient Contrastive Learning with Attention Sampling

	. Related Work
	. Experiments
	. Discussion
	. Memory Cost Analysis
	. Derivations
	. Supplementary Figures
	. Details of Generating NeedleCamelyon Dataset
	. Details of the Functional Map of the World Subset
	. More Implementation Details of Attention and
	. Complete Training Details
	. Time/Memory-Accuracy Trade-off
	. Ablation Study
	. Limitations: when there is no discriminative information at lower scales
	. Model Components
	. Leveraging Pixel-Level Annotations
	. Engineering Details for Camelyon16 Experiment
	. Code and Data Availability

