
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
Supplementary Material

Lingtong Kong1∗, Boyuan Jiang2∗, Donghao Luo2, Wenqing Chu2, Xiaoming Huang2,
Ying Tai2, Chengjie Wang2, Jie Yang1†

1Shanghai Jiao Tong University, China, 2Youtu Lab, Tencent
{ltkong, jieyang}@sjtu.edu.cn

{byronjiang, michaelluo, wenqingchu, skyhuang, yingtai, jasoncjwang}@tencent.com

Figure 10. Qualitative results of IFRNet for 8× interpolation on GoPro [9] and Adobe240 [13] test datasets. Please watch the video
with Adobe Reader. Each video has 9 frames where the first and the last frames are input, and the middle 7 frames are predicted by IFRNet.

In the supplementary, we first present multi-frame inter-
polation experiments of IFRNet. Second, qualitative video
comparisions with other advanced VFI approaches are dis-
played. Third, we depict structure details of IFRNet and
its variants. Fourth, we provide more visual examples and
analysis of middle components for better understanding the
workflow of IFRNet. Finally, we show the screenshot of
VFI results on the Middlebury benchmark. Please note
that the numbering within this supplementary has manually
been adjusted to continue the ones in our main paper.

6. Multi-Frame Interpolation
Different from other multi-frame interpolation meth-

ods which scales optical flow [1, 5] or interpolates middle
frames recursively [2, 7], IFRNet can predict multiple in-
termediate frames by proposed one-channel temporal en-

∗ Equal contribution. This work was done when Lingtong Kong was
an intern at Tencent Youtu Lab. Code is available at https://github.
com/ltkong218/IFRNet.
† Corresponding author: Jie Yang (jieyang@sjtu.edu.cn). This re-

search is partly supported by NSFC, China (No: 61876107, U1803261).

Method
GoPro [9] Adobe240 [13] Time

PSNR SSIM PSNR SSIM (s)

DVF [8] 21.94 0.776 28.23 0.896 0.87
SuperSloMo [5] 28.52 0.891 30.66 0.931 0.44

DAIN [1] 29.00 0.910 29.50 0.910 4.10
IFRNet (Ours) 29.84 0.920 31.93 0.943 0.16

Table 5. Quantitative comparison for 8× interpolation.

coding mask T , which is one of the input of the coars-
est decoder D4. The temporal encoding is a conditional
input signal whose values are all the same and set to t,
where t ∈ {1/8, 2/8, . . . , 7/8} in 8× interpolation setting.
Also, proposed task-oriented flow distillation loss and fea-
ture space geometry consistency loss still work for any in-
termediate time instance t. To evaluate IFRNet for 8× in-
terpolation, we use the train/test split of FLAVR [6], where
we train IFRNet on GoPro [9] training set with the same
learning schedule and loss functions as our main paper.
Then we test the pre-trained model on GoPro testing and
Adobe240 [13] datasets whose results are listed in Table 5.

IFRNet outperforms all of the other SOTA methods

https://github.com/ltkong218/IFRNet
https://github.com/ltkong218/IFRNet


Ground Truth DAIN [1] CAIN [2]

AdaCoF [7] ABME [12] IFRNet (Ours)

Ground Truth DAIN [1] CAIN [2]

AdaCoF [7] ABME [12] IFRNet (Ours)

Ground Truth DAIN [1] CAIN [2]

AdaCoF [7] ABME [12] IFRNet (Ours)

Figure 11. Video comparison on SNU-FILM [2] dataset. Please watch the video with Adobe Reader and zoom in for best view.

with 2 input frames on both GoPro and Adobe240 datasets
in both PSNR and SSIM metrics. For example, IFRNet
achieves 0.84 dB better results than DAIN [1] on GoPro

and exceeds SuperSloMo [5] by 1.27 dB on Adobe240.
Thanks to the modularity character of IFRNet, the encoder
only needs a single forward pass, while the decoders infer 7



times with different temporal embedding to convert videos
from 30 fps into 240 fps. Therefore, the speed advantage of
IFRNet is still or even more obvious than other approaches.
Figure 10 gives some qualitative results of IFRNet for 8×
interpolation, demonstrating its superior ability for frame
rate up-conversion and slow motion generation.

7. Video Comparison
In this part, we qualitatively compare interpolated videos

by proposed IFRNet against other open source VFI methods
on SNU-FILM [2] dataset, whose results are shown in Fig-
ure 11. As can be seen, our approach can generate motion
boundary and texture details faithfully thanks to the power-
fulness of gradually refined intermediate feature.

8. Network Architecture
In this section, we present the structure details of five

sub-networks of IFRNet, i.e., pyramid encoder E and
coarse-to-fine decoders D4,D3,D2,D1. In each follow-
ing figure, arguments of ‘Conv’ and ‘Deconv’ from left to
right are input channels, output channels, kernel size, stride
and padding, respectively. Dimensions of input and output
tensors from left to right stand for feature channels, height
and width, separately. A PReLU [4] follows each ‘Conv’
layer, while there is no activation after each ‘Deconv’ layer.
In practice, the intermediate flow fields are estimated in
a residual manner, which is not reflected in the figures to
emphasize the primary network structure. We take input
frames with spatial size of 640×480 as example.

Conv(3, 32, 3, 2, 1)

𝑰𝒍 , 𝟑×𝟒𝟖𝟎×𝟔𝟒𝟎

Conv(32, 32, 3, 1, 1)

Conv(32, 48, 3, 2, 1)

Conv(48, 48, 3, 1, 1)

Conv(48, 72, 3, 2, 1)

Conv(72, 72, 3, 1, 1)

Conv(72, 96, 3, 2, 1)

Conv(96, 96, 3, 1, 1)

𝝓𝒍
𝟒, 𝟗𝟔×𝟑𝟎×𝟒𝟎

𝝓𝒍
𝟑, 𝟕𝟐×𝟔𝟎×𝟖𝟎

𝝓𝒍
𝟐, 𝟒𝟖×𝟏𝟐𝟎×𝟏𝟔𝟎

𝝓𝒍
𝟏, 𝟑𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎

Figure 12. Details of the pyramid encoder E . The two input
frames Il, l ∈ {0, 1} are encoded by the same Siamese network.

As for IFRNet large and IFRNet small, feature channels
from the first to the fourth pyramid levels are set to 64, 96,
144, 192 and 24, 36, 54, 72, respectively. Correspondingly,
channel numbers in multiple decoders are adjusted. Also,

Concat

Conv(193, 192, 3, 1, 1)

Conv(192, 192, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(192, 192, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(192, 192, 3, 1, 1)

Deconv(192, 76, 4, 2, 1)

𝝓𝟎
𝟒, 𝟗𝟔×𝟑𝟎×𝟒𝟎; 𝝓𝟏

𝟒, 𝟗𝟔×𝟑𝟎×𝟒𝟎;
𝑻, 𝟏×𝟑𝟎×𝟒𝟎

Split

+𝝓𝒕
𝟑, 𝟕𝟐×𝟔𝟎×𝟖𝟎; 𝑭𝒕→𝟎𝟑 , 𝟐×𝟔𝟎×𝟖𝟎; 𝑭𝒕→𝟏𝟑 , 𝟐×𝟔𝟎×𝟖𝟎

Figure 13. Details of the bottom decoder D4.

Concat

Conv(220, 216, 3, 1, 1)

Conv(216, 216, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(216, 216, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(216, 216, 3, 1, 1)

Deconv(216, 52, 4, 2, 1)

!𝝓𝒕
𝟑, 𝟕𝟐×𝟔𝟎×𝟖𝟎; *𝝓𝟎

𝟑 , 𝟕𝟐×𝟔𝟎×𝟖𝟎; *𝝓𝟏
𝟑 , 𝟕𝟐×𝟔𝟎×𝟖𝟎;

𝑭𝒕→𝟎𝟑 , 𝟐×𝟔𝟎×𝟖𝟎; 𝑭𝒕→𝟏𝟑 , 𝟐×𝟔𝟎×𝟖𝟎

Split

!𝝓𝒕
𝟐, 𝟒𝟖×𝟏𝟐𝟎×𝟏𝟔𝟎; 𝑭𝒕→𝟎𝟐 , 𝟐×𝟏𝟐𝟎×𝟏𝟔𝟎; 𝑭𝒕→𝟏𝟐 , 𝟐×𝟏𝟐𝟎×𝟏𝟔𝟎

Figure 14. Details of the middle decoder D3.

feature channels of the third and the fifth convolution lay-
ers in coarse-to-fine decoders of IFRNet large and IFRNet
small are set to 64 and 24, separately.



Concat

Conv(148, 144, 3, 1, 1)

Conv(144, 144, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(144, 144, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(144, 144, 3, 1, 1)

Deconv(144, 36, 4, 2, 1)

!𝝓𝒕
𝟐, 𝟒𝟖×𝟏𝟐𝟎×𝟏𝟔𝟎; +𝝓𝟎

𝟐 , 𝟒𝟖×𝟏𝟐𝟎×𝟏𝟔𝟎; +𝝓𝟏
𝟐 , 𝟒𝟖×𝟏𝟐𝟎×𝟏𝟔𝟎;

𝑭𝒕→𝟎𝟐 , 𝟐×𝟏𝟐𝟎×𝟏𝟔𝟎; 𝑭𝒕→𝟏𝟐 , 𝟐×𝟏𝟐𝟎×𝟏𝟔𝟎

Split

!𝝓𝒕
𝟏, 𝟑𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎; 𝑭𝒕→𝟎𝟏 , 𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎; 𝑭𝒕→𝟏𝟏 , 𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎

Figure 15. Details of the middle decoder D2.

Concat

Conv(100, 96, 3, 1, 1)

Conv(96, 96, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(96, 96, 3, 1, 1)

Split

Conv(32, 32, 3, 1, 1)

Concat

Conv(96, 96, 3, 1, 1)

Deconv(96, 8, 4, 2, 1)

!𝝓𝒕
𝟏, 𝟑𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎; )𝝓𝟎

𝟏 , 𝟑𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎; )𝝓𝟏
𝟏 , 𝟑𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎;

𝑭𝒕→𝟎𝟏 , 𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎; 𝑭𝒕→𝟏𝟏 , 𝟐×𝟐𝟒𝟎×𝟑𝟐𝟎

Split

𝑭𝒕→𝟎, 𝟐×𝟒𝟖𝟎×𝟔𝟒𝟎; 𝑭𝒕→𝟏, 𝟐×𝟒𝟖𝟎×𝟔𝟒𝟎;
𝑴, 𝟏×𝟒𝟖𝟎×𝟔𝟒𝟎; 𝑹, 𝟑×𝟒𝟖𝟎×𝟔𝟒𝟎

Figure 16. Details of the top decoder D1.

9. Visualization and Discussion

Figure 17 presents some visual examples to show the ro-
bustness masks in proposed task-oriented flow distillation

Figure 17. Illustration of task-oriented flow distillation. From
top to bottom rows are ground truth frame Igtt , pseudo label of
intermediate flow fields F p

t→0, F
p
t→1, predicted intermediate flow

fields Ft→0, Ft→1, task-oriented robustness masks P0, P1. Darker
color in P0, P1 approaches to 1, while brighter color tends to 0.
Each column represents a separate example on Vimeo90K [15]
dataset. Zoom in for best view.

loss, which can decrease the adverse impacts while focusing
on the useful knowledge for better frame interpolation. It
seems that intermediate flow prediction of IFRNet behaves
smoother and contains less artifacts than flow prediction of
pseudo label, that helps to achieve better VFI accuracy.

Figure 18. Illustration of mean feature map of intermediate
feature φ̂1

t w/o and w/ Lg . From top to bottom rows are ground
truth frame Igtt , mean feature map of φ̂1

t w/o Lg , mean feature
map of φ̂1

t w/ Lg . Each column represents a separate example on
Vimeo90K [15] dataset. Zoom in for best view.

Figure 18 depicts more visual results of mean feature
maps of intermediate feature w/o and w/ proposed geome-
try consistency loss, demonstrating its effect on regularizing
refined intermediate feature to keep better structure layout.

Figure 19 gives visual understanding of frame interpola-



Figure 19. Illustration of intermediate components of IFRNet. From top to bottom rows are input frames I0, I1, predicted intermediate
flow fields Ft→0, Ft→1, warped input frames Ĩ0, Ĩ1, merge maskM , merged frame Î

′
t , residualR, final prediction Ît and ground truth Igtt ,

where merged frame is calculated by Î
′
t =M � Ĩ0 + (1−M)� Ĩ1. For better visualization of residual R, we multiply it by 10 and add a

bias of 0.5. Each column represents a separate example on Vimeo90K [15] dataset. Zoom in for best view.

tion process of IFRNet. Thanks to the reference anchor in-
formation offered by intermediate feature together with ef-
fective supervision provided by geometry consistency loss
and task-oriented flow distillation loss, IFRNet can estimate
relatively good intermediate flow with clear motion bound-
ary. Further, we can see that merge mask M can identify
occluded regions of warped frames by adjusting the mix-
ing weight, where it tends to average the candidate regions
when both views are visible. Finally, residual R can com-
pensate for some contextual details, which usually response
at motion boundary and image edges. Different from other
flow-based VFI methods that take cascaded structure de-
sign, merge mask M and residual R in IFRNet share the
same encoder-decoder with intermediate optical flow, mak-
ing proposed architecture achieve better VFI accuracy while

being more lightweight and fast.

Readers may think our IFRNet is similar with PWC-
Net [14] which is designed for optical flow. However, It is
non-trivial to adapt PWC-Net for frame interpolation, since
previous related works employ it as one of many compo-
nents. We summarize their difference in several aspects:
1) Anchor feature in PWC-Net is extracted by the encoder,
while in IFRNet, it is reconstructed by the decoder. 2) Be-
sides motion information in intermediate feature, there are
occlusion, texture and temporal information in it. 3) PWC-
Net designed for motion estimation, is optimized only by
flow regression loss with strong augmentation. However,
IFRNet designed for frame synthesizing, is optimized in a
multi-target manner with weak data augmentation.



Figure 20. Screenshot of our IE-ranking on the Middlebury benchmark (taken on the November 16th, 2021).

Figure 21. Screenshot of our NIE-ranking on the Middlebury benchmark (taken on the November 16th, 2021).

10. Screenshots of the Middlebury Benchmark

We take screenshots of the online Middlebury bench-
mark for VFI on the November 16th, 2021, whose results
are shown in Figure 20 and Figure 21. Since the average
rank is a relative indicator, previous methods [1, 3, 10, 11]
usually report average IE (interpolation error) and aver-
age NIE (normalized interpolation error) for comparison.
As summarized in Table 2 in our main paper, proposed
IFRNet large model achieves best results on both IE and
NIE metrics among all published VFI methods that are
trained on Vimeo90K [15] dataset. Moreover, IFRNet large
runs several times faster than previous state-of-the-art al-
gorithms [10, 12], demonstrating the superior VFI accuracy
and fast inference speed of proposed approaches.

References
[1] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 1, 2, 6

[2] Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and
Kyoung Mu Lee. Channel attention is all you need for video
frame interpolation. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2020. 1, 2, 3

[3] Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao.
Featureflow: Robust video interpolation via structure-to-
texture generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2020. 6

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.



Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015. 3

[5] Huaizu Jiang, Deqing Sun, Varan Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames for
video interpolation. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2018. 1, 2

[6] Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and
Du Tran. Flavr: Flow-agnostic video representations for fast
frame interpolation. In Arxiv, 2021. 1

[7] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun
Pak, Yuseok Ban, and Sangyoun Lee. Adacof: Adaptive col-
laboration of flows for video frame interpolation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 1, 2

[8] Ziwei Liu, Raymond A. Yeh, Xiaoou Tang, Yiming Liu, and
Aseem Agarwala. Video frame synthesis using deep voxel
flow. In 2017 IEEE International Conference on Computer
Vision (ICCV), 2017. 1

[9] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In CVPR, 2017. 1

[10] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 6

[11] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.
Bmbc: Bilateral motion estimation with bilateral cost vol-
ume for video interpolation. In European Conference on
Computer Vision, 2020. 6

[12] Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric
bilateral motion estimation for video frame interpolation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 2, 6

[13] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
1

[14] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018. 5

[15] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV),
2019. 4, 5, 6


	anm25: 
	25.4: 
	25.3: 
	25.2: 
	25.1: 
	25.0: 
	anm24: 
	24.4: 
	24.3: 
	24.2: 
	24.1: 
	24.0: 
	anm23: 
	23.4: 
	23.3: 
	23.2: 
	23.1: 
	23.0: 
	anm22: 
	22.4: 
	22.3: 
	22.2: 
	22.1: 
	22.0: 
	anm21: 
	21.4: 
	21.3: 
	21.2: 
	21.1: 
	21.0: 
	anm20: 
	20.4: 
	20.3: 
	20.2: 
	20.1: 
	20.0: 
	anm19: 
	19.4: 
	19.3: 
	19.2: 
	19.1: 
	19.0: 
	anm18: 
	18.4: 
	18.3: 
	18.2: 
	18.1: 
	18.0: 
	anm17: 
	17.4: 
	17.3: 
	17.2: 
	17.1: 
	17.0: 
	anm16: 
	16.4: 
	16.3: 
	16.2: 
	16.1: 
	16.0: 
	anm15: 
	15.4: 
	15.3: 
	15.2: 
	15.1: 
	15.0: 
	anm14: 
	14.4: 
	14.3: 
	14.2: 
	14.1: 
	14.0: 
	anm13: 
	13.4: 
	13.3: 
	13.2: 
	13.1: 
	13.0: 
	anm12: 
	12.4: 
	12.3: 
	12.2: 
	12.1: 
	12.0: 
	anm11: 
	11.4: 
	11.3: 
	11.2: 
	11.1: 
	11.0: 
	anm10: 
	10.4: 
	10.3: 
	10.2: 
	10.1: 
	10.0: 
	anm9: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	anm8: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm7: 
	7.8: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.8: 
	6.7: 
	6.6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


