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A. Implementation

A.1. Training details

The model is optimized using Adam with the settings of
β1=0.5 and β2=0.999. All modules are trained from scratch
with a learning rate of 0.0001. We initialize the weights of
convolutional and linear layers with a Guassian distribution
N (0,0.02). The batch size is set to 16 in all experiments.
Our method is implemented in PyTorch and all experiments
are conducted on a single NVIDIA 1080Ti GPU.

Chinese font generation All the images are resized to
128× 128 pixels. The learning rate is initially set to 0.0001
and linearly decreased to zero after 40 epochs.

Handwriting generation The images are resized to a
height of 64 pixels, and the width is calculated with the
original aspect ratio (up to 384 pixels). We keep the learn-
ing rate as 0.0001 for the first 15 epochs and linearly decay
the rate to zero over the next 30 epochs.

Scene text editing For the scene text editing task, the
model is trained with synthetic data and evaluated on real-
world scene text image data. Specifically, we generate 1.4M
synthetic data (Is, I

′

s) with the synthesizing engine Syn-
thTiGER [10], where Is and I

′

s have different textual con-
tent (T, T

′
) respectively but other image properties such as

background, font, etc. remain the same. In the training pro-
cess, we use Is as the style reference input and meanwhile,
render the textual content T

′
into a content reference image,

which is used as the content reference input. Since the scene
text image lacks a style label, we set the style retention loss
to zero and add the perceptual loss [1] and the spatially-
correlative loss [12] on the basis of the original training ob-
jectives. The test set is sampled from regular and irregular
scene text datasets, including IIIT5k [5], SVT [9], IC03 [4],
IC13 [3], SVT-P [6], CUTE80 [7] and IC15 [2], with a total
of 9,350 real-world scene text images. All the images are
resized to 64 × 256 pixels and the model is trained for 20
epochs with a learning rate of 0.0001.

A.2. Network architectures

Generator architecture Our generator is built upon the
ResNet architecture of [11], and is further extended with
our proposed changes. The original generator of [11] is
an encoder-decoder architecture. In order to obtain the font
generator, we adopt the original encoder architecture as our
style encoder and content encoder, while using the original
decoder architecture as our mixer, with a channel multiplier
ch = 64. Specifically, the style encoder and the content en-

coder have the same architecture, consisting of five ResNet
down-sampling blocks with a total down-sampling rate of
32. In the mixer, the encoded features are upsampled via
five ResNet up-sampling blocks until the original image res-
olution is reached. To produce the 3×H×W output image,
an InstanceNorm-ReLU-conv2d block with output channel
3 is additionally appended as the last layer of the mixer.
We remove the self-attention layer in all ResNet blocks and
add AdaIN operation as the normalization layer in every up-
sampling block of the mixer.

CAM architecture The proposed CAM aims to super-
vise the generator at the component level. The detailed ar-
chitecture of the CAM is shown in Table 1.

Discriminator architecture For the discriminator net-
works, we adopt a U-Net based discriminator [8]. Specifi-
cally, We adopt the U-Net discriminator architecture of the
128× 128 resolution with a channel multiplier ch = 16.

B. Additional qualitative results
In this section, We present more qualitative results and

ablation study results to better validate the effectiveness of
our proposed method.

B.1. One-shot font generation

In Figure 1 and Figure 2, we present more generated
samples in two scenarios: seen styles and unseen styles, re-
spectively. Specifically, we randomly select 30 seen fonts
and 20 unseen fonts from the two Chinese glyph test sets,
and randomly sample 10 unseen target glyphs for each font
to carry out the qualitative evaluation. Note that all the gen-
erated glyphs are tested in a one-shot setting, with one sin-
gle style reference image provided. The results show that
CG-GAN can generate high-quality glyph images in both
scenarios, suggesting the superior one-shot font generation
ability. Figure 3 shows that our model is able to extend to
cross-lingual font generation. The model is trained on Chi-
nese fonts but is able to generate a complete Korean font
library in inference.

B.2. Latent space interpolations

In Figure 5, we perform a linear style interpolation be-
tween two random styles on the IAM dataset. We can ob-
serve that the generated image can smoothly change from
one style to another, while strictly preserving its textual
content. The results indicate that CG-GAN can general-
ize in the style latent space rather than memorizing some
specific style patterns. Besides, we present some synthetic



Table 1. CAM architecture. BN denotes the batch normalization, and IN denotes the Instance normalization

Operation Kernel size Resample Padding Feature maps Normalization Nonlinearity

Feature encoder

Convolution 7 MaxPool 3 96 BN PReLU
Convolution 3 MaxPool 1 128 BN PReLU
Convolution 3 MaxPool 1 160 BN PReLU
Convolution 3 - 1 256 BN PReLU
Convolution 3 MaxPool 1 256 BN PReLU

Attention decoder
256 hidden units,
256 GRU units

Style classifier

Convolution 3 MaxPool 1 256 IN PReLU
Convolution 3 - 1 512 IN PReLU
Convolution 3 MaxPool 1 512 IN PReLU
Convolution 3 - 1 n styles - -

Component-wise discriminator

Convolution 3 MaxPool 1 128 IN PReLU
Convolution 3 MaxPool 1 64 IN PReLU
Convolution 3 - 1 16 IN PReLU
Convolution 3 - 1 1 - -

word images with various calligraphic styles in Figure 4,
where each row presents diverse generated samples in the
same calligraphic style.

B.3. Scene text editing

In Figure 6, we present more scene text editing results.
As we can observe, our model can robustly edit textual con-
tents with different lengths, and achieve promising results
even in challenging cases, such as complex backgrounds or
slanted or curved texts.

B.4. Additional ablation results

Influence of the style latent vector In this part, we
trained a variant where the AdaIN operation including the
style latent vector fs is removed. Results are shown in Ta-
ble 2. It is noted that there is only a slight drop in perfor-
mance, indicating that the style latent vector fs is not that
necessary. Such results partly reflect our primary purpose,
that is, the performance improvement is mainly gained by
providing more effective supervision for the generator, not
by struggling to increase the complexity of the generator.

Influence of the U-net Discriminator We further inves-
tigate the influence of the U-net architecture of the discrim-
inator. Specifically, we trained a variant where the U-net
architecture of the discriminator is removed, only the en-
coder part Denc is preserved. For font generation and hand-
writing generation tasks, we set the channel multiplier ch
of the discriminator to 16 and 64, respectively. As shown
in Table 3, the performance of the variant is comparable
to our current approach on the font generation task, which
still outperforms all the other baselines in all metrics. And
the variant is also competitive on handwriting generation
task, as shown in Table 4. The results indicate that decoder
partDdec has no significant effect on the performance. This
may be due to the simple background of the dataset, which

contains a lot of pixels with values (255,255,255), thus the
pixel-level discrimination performed byDdec may not be so
effective.

Table 2. The impact of the style latent vector on the Chinese font
generation task.

Method SSIM↑ RMSE↓ LPIPS↓ FID↓

CG-GAN (ours) 0.7568 0.0218 0.2058 17.94
w/o style latent 0.7549 0.0225 0.2193 18.73

Table 3. The impact of the U-net architecture of the discriminator
on the Chinese font generation task.

Method SSIM↑ RMSE↓ LPIPS↓ FID↓
Seen styles and Unseen contents

CG-GAN (ours) 0.7703 0.0212 0.1919 6.54
w/o Ddec 0.7795 0.0207 0.1821 7.14

Unseen styles and Unseen contents
CG-GAN (ours) 0.7568 0.0218 0.2058 17.94

w/o Ddec 0.7603 0.0214 0.1967 19.07

Table 4. The impact of the U-net architecture of the discriminator
on the writer-relevant handwriting generation task.

IV-S IV-U OOV-S OOV-U

CG-GAN (ours) 102.18 110.07 104.81 113.01
w/o Ddec 101.48 111.29 102.67 112.77



Figure 1. Seen styles and unseen contents in Chinese one-shot font generation.



Figure 2. Unseen styles and unseen contents in Chinese ont-shot font generation.

Figure 3. Cross lingual font generation.
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Figure 4. Visual comparison for synthesizing handwritten words.
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Figure 5. Style interpolation between two different styles.



Figure 6. Additional scene text editing results.
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