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In this supplementary material, we provide additional in-
formation to further understand our proposed approach. In
section 1, we provide an architectural overview of how to
calculate a 512 dimension vector from last the layer of Tem-
poral Convolutional Network (TCN). We provide dataset
and preprocessing details in section 2. Finally in section
3, t-SNE plots and additional class activation maps provide
insights into OA severity prediction from knee radiographs.

1. Architecture details - TCN output

Figure 1. Derivation of temporal representation from last layer of
TCN.

A row-wise summation operation is applied on the self-
attention weights obtained from the third and final self-
attention block in our TCN architecture. This results in a
‘T’ length attention vector, the softmax of which gives the
attention scores. When these attention scores are multiplied
with the output of TCN, they generate an optimal 512 di-
mension representation. The steps are illustrated in Supple-
mentary Fig 1

2. Assets and preprocessing
Chest Radiograph dataset: For snapshot pretraining, we
used 28433 chest radiographs (comprising multiple pul-

monary diseases). CovidProg dataset, which contained 942
scans from 150 COVID-19 patients, comprised the temporal
data. The duration between the CXR scans are variable (1-
5 days). The number of timepoints per patient varies from
4 to 16. Out of the total 150 patients, 23 cases were ob-
tained from Newark Beth Israel Medical Center, 77 from
Stony Brook University Hospital, and 50 from University
Hospitals Cleveland Medical Center.
OA Radiograph dataset: For snapshot pretraining, we
used 23008 images. 2474 knee scans from 426 patients
comprised the temporal data. The images in the ‘train’
folder of Kaggle [2] were a fraction of the snapshot cohort
used in pretraining the transformer. All the images in ‘val-
idation’ and ‘test’ folder [2] were jointly used in finetuning
stage.

The experiments were performed in a 5-fold cross vali-
dation setting in the finetuning stage where the pretrained
transformer model was finetuned on 4 folds and tested on
the remaining fold. Details about the data used for each
stage can be found in Supplementary Table 1

Stage COVID OA
Snapshot 21165 [3] + 7268 [9] 17230 [6] + 5778 train folder [2]
Temporal 942 (CovidProg) 2474 [6]
Finetune 631 (Vent.), 531 (Mort.) [7] 2482 val + test folder [6]

Table 1. Data utilized in different stages

COVID-19 preprocessing: Lung region segmentation was
first performed using a Residual UNet model [10]. All chest
scans were aligned to the same intensity range through an
average histogram matching method.
OA preprocessing: We utilized BoneFinder tool [5] to lo-
calize and crop the knee joint landmarks. Following [8],
histogram clipping and global contrast normalization were
applied to each localized knee joint image.

Samples of COVID and OA images after pre-processing
are shown in Supplementary Fig 2 and Supplementary Fig
3, respectively.
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Figure 2. Preprocessed chest scans after applying average histogram matching and lung segmentation

Figure 3. Preprocessed knee radiographs (1b, 2b) generated after
joint localization [5] and global contrast normalization [8] on orig-
inal samples (1a, 2a)

3. Insights from OA severity prediction

Supplementary Fig 4 demonstrates that utilizing tempo-
ral representations in our architecture results in better de-
fined clusters for the three severity grades (0, 1, 2) on the t-
SNE plot. It may be observed that intermediate grades, such
as 1 vs 2, which are more difficult to predict (left) can bene-
fit from the proposed temporal approach (right). Additional
CAMs of OA affected knees are compared in Supplemen-
tary Fig 5. Each row corresponds to knee radiographs from
different severity grades, from 0 to 4. As may be observed,
the attention maps from DeepKnee [8] , CNN + Ordinal
loss [1] and SE block [4] are very sparse and sometimes
react to unnecessary areas (bone texture, joint centre). On
the contrary, our method provides more focused attention
on the osteophytes and joint narrowing - the two important
indicators of osteoarthritis.

4. Recalibration using matching data

In the COVID-19 cohort, we included some matched
data. 100 of 150 patients in the CovidProg temporal dataset
also have their ventilation status known. We use the 100 pa-
tients, take the baseline scans (the first image) of their tem-
poral sequences as matched snapshot images. We evaluated
the distance between these matched temporal/snapshot data
in the representation space through training. In Supplemen-

tary Fig 6, Curve A (blue) shows the average distance (d)
between the matched pair of snapshot and temporal repre-
sentation. d is reduced to only 0.10 after 40 epochs. For
reference, we also show d between any snapshot of posi-
tive ventilation status (S+) and any temporal sequence of
positive ventilation status (Tm+). The result is Curve B (or-
ange). Meanwhile, we also report d between S+ and any
temporal sequence with negative ventilation status (Tm-) as
in Curve C (green). After 40 epochs, d in A,B,C are 0.10,
0.67 and 4.26, respectively. C>>B>A shows that (1) the
matched snapshots and temporal sequences are automati-
cally aligned very well during training, thanks to the MMD
loss; (2) generally a positive temporal sequence is aligned
much closer to a positive snapshot than a negative snapshot,
although not as close as the matched pairs.

5. Longitudinal comparison

We also compared our method with other tempo-
ral models, namely CNN+LSTM, CNN+biLSTM and
CNN+biLSTM+Attention. It may be observed from Sup-
plementary Table 2 that our approach outperforms all these
longitudinal models.

Name Ventilation
Method AUC

CNN+LSTM 0.82
CNN+biLSTM 0.83

CNN+biLSTM+Attention 0.85
Ours 0.88

Table 2. Comparison with longitudinal methods

6. Limitations

In our temporal analysis, the images are not registered.
Registration might result in learning better representations.
We aim to address this in the future by using a spatial trans-
former network as a pre-processing stage before extracting
temporal features. Also, due to lack of sufficient temporal
data, we did not use transformer architectures to learn dis-
ease progression. This research direction can be pursued



Figure 4. Comparison between t-SNE plots before and after using temporal modeling for severity grades (0,1,2)

with the availability of more temporal cases in future.

Figure 5. Qualitative comparisons of knee CAMs depicting OA
severity grades 0 to 4 (top to bottom)

Figure 6. Distance between feature means across training
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