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In this supplementary material, we first further ana-
lyze the effect of using super-segments instead of points
while varying the granularity of the super-segments (Sec-
tion S.1). Then, we demonstrate how much the attention
module in our network affects the target shape discrimina-
tion in the reference games (Section S.2). We also show
more results of the out-of-distribution test with Airplanes
and Cars (quantitatively in Section S.3 and qualitatively in
Section S.10), and also analyze how much training data is
needed to obtain meaning part segmentation results (Sec-
tion S.4). The cross-part mIoUs are also reported in Sec-
tion S.5. We also provide results when an additional regu-
larization loss (group consistency loss introduced in Ada-
CoSeg [9]) is used (Section S.6) and also a more recent
text encoder (ALBERT [4]) is used instead of LSTM, while
these variations do not change the results much. We also
experiment with finer-grained parts in PartNet [5] and syn-
thetic referential language and report the results in Sec-
tion S.8. At the end, we provide implementation details
(Section S.9), and more qualitative results (Section S.10)
and comparisons (Section S.11).

S.1. Effect of Granularity of Super-Segments
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Figure S1. Results with different granularities of the super-
segments. Left shows the average mIoUs, and right shows the tar-
get shape classification accuracy. The X-axis is the average num-
ber of super-segments in each shape in log scale; the higher, the
smaller the super-segments are.

Our results in Section 4.2 in the main paper shows that
using a set of super-segments as input instead of a point
cloud is one of the crucial parts of our framework to achieve
meaningful segmentation results through attention, while

the accuracy of the target shape classification is not affected
much by the representation of shapes. We further analyze
the effect of super-segments while varying their granular-
ity. Although BSP-Net has parameters about the number
of planes and the maximum number of convexes in train-
ing, increasing these numbers does not lead to producing
more final convexes in practice. Thus, to achieve finer gran-
ularities, we use K-means clustering implemented in scikit-
learn [6] to split each given super-segment into smaller
pieces. For each super-segment si, we use K-means clus-
tering for the points included in the super-segment (let Pi

denote the points) and set the number of subgroups K in
the clustering to be [|Pi|/N ], where N is our granularity
parameter and [·] is the rounding function. When N is set
to be the number of points in the entire point cloud (2048
in our experiments), it is the extreme case that the set of
super-segments becomes the input point cloud itself. We
test our network (with the PN-Aware setup) while varying
the N from 16 to 256 (and 2048, which is the extreme case).
Figure S1 illustrates the changes of the average mIoU in the
part segmentation (left) and the accuracy of the target shape
classification (right). The X-axis of the plots shows the av-
erage number of super-segments in each shape in log scale,
and the Y-axis shows either the average mIoU or the ac-
curacy. Interestingly, the granularity of the super-segments
does not make any meaningful difference in the accuracy
of the target shape classification but greatly affects the part
segmentation mIoUs; more super-segments (smaller super-
segments) results in a worse segmentation. This concludes
that pre-merging the points as much as possible with geo-
metric properties is the key to obtaining meaningful atten-
tion maps aligned with semantic parts.

S.2. Effect of Learning Attention

Table S1. Comparison with the cases of using uniform and random
attention maps.

Method Classification Accuracy (%)

Random {wi} 58.4
Uniform {wi} 59.3

Ours (Learning {wi}) 61.5
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To demonstrate whether our neural network learns the at-
tention in a way to improve the discrimination of the target
shape, we compare our attention module with two cases:
using uniform attention maps and using random attention
maps. As shown in Table S4, uniform attention maps pro-
vide better accuracy in the target shape classification com-
pared with random attention maps, although its accuracy is
still lower than the accuracy of our network learning the at-
tention.

S.3. Out-of-Distribution Test — More Categories

Table S2. Quantitative results of the out-of-distribution test with
Airplanes and Cars. The highest mIoU for each part of the target
class is marked in bold.

Other
Classes

Chair (w/ PN-Aware)
Back Seat Leg Arm

Airplane

Body 17.5 26.1 30.2 0.2
Wing 3.1 47.5 3.5 6.3
Tail 46.5 0.8 1.0 0.2

Engine 5.4 11.6 6.1 7.5

Car

Roof 6.2 2.8 0.6 7.5
Hood 0.1 17.5 1.5 0.6
Wheel 9.9 12.5 21.3 1.6
Body 45.3 29.5 2.4 10.5

In addition to the out-of-distribution test results in Sec-
tion 4.3 in the main paper we provide more results testing
our network trained with Chair shapes and utterances to Air-
planes and Cars. The mIoUs across the parts are reported
in Table S2, and qualitative results are in Section S.10. The
model trained with the PN-Aware setup is used. Despite
the big difference in the shapes, our model still recognizes
some semantic parts such as Airplane body, tail, and wing
and Car body and wheel.

S.4. Effect of Training Data Size

Table S3. Results when training with a subset of the training data.
Bold indicates the best result for each column.

Utterance
Rate

Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

100% 84.9 83.6 78.9 70.4 79.4 61.5
50% 80.9 79.0 77.1 70.9 77.0 56.0
25% 56.5 37.5 76.1 66.1 59.1 53.8

Table S3 illustrates results when only 50% and 25% of
utterances are used in training (in the PN-Aware case). The
part segmentation mIoUs are not changed much even when
only 50% of the utterances are used, even when the target
shape classification accuracy is decreased. In an extreme
case using only 25% of the utterances in training, the mIoUs
are decreased. This shows that our network does not neces-
sitate a huge scale of data to obtain meaningful results.

S.5. Cross-Part mIoUs

Table S4. Part segmentation mIoUs across parts. The highest
mIoU for each ground truth part is marked in bold.

Ground
Truth

Prediction
Back Seat Leg Arm

PN-Agnostic (Sec. 3.2)

Back 82.2 4.2 1.6 3.5
Seat 0.8 78.8 1.5 5.2
Leg 0.5 4.2 75.5 3.1
Arm 0.2 0.7 0.8 40.6

PN-Aware (Sec. 3.3)

Back 84.9 2.5 1.5 1.7
Seat 1.8 83.6 2.6 1.4
Leg 1.1 2.4 78.9 0.7
Arm 0.4 0.6 1.3 70.4

We report the cross-part mIoUs for both PN-Agnostic
and PN-Aware cases in Table S4. The diagonals are the
same numbers reported in row 2 and 3 in Table 2 of the
main paper. For both cases, the mIoUs of the corresponding
parts are overwhelmingly higher than the ones of the other
parts, indicating that there is almost no overlap across the
attention maps of the parts.

S.6. Low Rank Regularization in AdaCoSeg [9]

Table S5. Results with the group consistency loss introduced by
AdaCoSeg [9]. Bold indicates the best result for each column.

Regularization Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

LCE (Ours) 84.9 83.6 78.9 70.4 79.4 61.5
LCE + LCoseg 83.4 82.2 79.2 72.0 79.2 60.2

LCoseg 79.2 80.1 78.1 72.5 77.5 60.6

AdaCoSeg [9] discussed in Section 2 in the main paper
introduces a novel rank-based loss function improving the
performance of the co-segmentation task. The loss func-
tion called group consistency loss (see Section 4.2 in the
AdaCoSeg paper) maximizes the similarity of descriptors
of the entities (super-segments in our case) included in the
same group while differentiating the descriptors of entities
assigned to different groups. The loss is computed with en-
tities of multiple shapes in a minibatch, and thus it can en-
force the consistency of the segmentation across multiple
shapes.

We try to adapt this loss function to our network training.
While this loss does not require labels, it still needs to define
groups. Hence, to adapt the loss to our network training,
we use the PN-Aware setup and consider the sets of super-
segments belonging to each predefined part as the groups.
For each super-segment si, we take the output of Per-Super
Segment Encoder g(si), the output of the last layer fed to
predict the key gk(si) and value gv(si) vectors. We collate
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“this chair has 
back_frame”

“this chair has 
seat_support”

“it has 
regular_leg_base_

bar_stretcher”

“the chair with
regular_leg_base_

runner”

“it contains
arm_near_

vertical_bar”

“the chair with
back_support”

“it contains
top_frame”

“this table has
top_leg_connector”

“it has
leg_stretcher”

“this chair contains 
back_surface”

Figure S2. PartNet Results. For each pair, top is the utterance, left is the ground truth, and right is the predicted segment. The segmented
parts of the given utterances are highlighted in color.

these descriptors for the super-segments assigned to each
part (based on the attention outputs); let Mk denote the set
of the descriptors (a matrix) for the k-th part. The group
consistency loss of AdaCoSeg is then defined as follows:

LCoseg = 1 +max
k

rank(Mk)−min
k ̸=l

rank([Mk,Ml]),

(1)

where rank indicates the second singular value of the
matrix and [·] denotes the concatenation of two matrices.

Table S5 shows the results when using the group consis-
tency loss in our network training. We find that the group
consistency loss does not help improve the segmentation ac-
curacy in our case. This result implies that the attention
module in our network already learns consistent attention
maps for each part.

S.7. Different Utterance Encoder — ALBERT [4]

Table S6. Results with ALBERT [4] as utterance encoders. Bold
indicates the best result for each column.

Utterance
Encoder

Segmentation mIoU(%) Classif.
Acc.(%)Back Seat Leg Arm Avg.

ALBERT (w/ FT) 83.1 81.5 79.7 61.1 76.4 62.9
ALBERT (w/o FT) 80.9 80.8 78.7 72.6 78.2 57.8

LSTM (Ours) 84.9 83.6 78.9 70.4 79.4 61.5

For the utterance encoding, we also try the other
Transformer-based encoder: ALBERT [4], which is a lite
version of BERT [2]. We experimented with ALBERT
in two ways: using a pretrained model and finetuning it,
and without a pretrained model and training from scratch;
the pretrained model is obtained from training BookCorpus
[10] dataset with a masked language model objective. In
the PN-Aware setup, the output of the classification encoder

fc(u) is obtained from the last hidden state of the [CLS] to-
ken, which is further processed through an MLP. The output
of the attention encoder fa(lk) with a part name lk is ob-
tained from the word embedding layer of ALBERT and also
processed through an MLP. The results are compared in Ta-
ble S6. Interestingly, the finetuned ALBERT does not im-
prove the overall part segmentation mIoUs compared with
our case of using a much simpler encoder, LSTM, while the
target shape classification accuracy is higher. When train-
ing ALBERT from scratch, the classification accuracy de-
creases compared to using LSTM.

S.8. More Fine-grained Parts Segmentation Test

Table S7. The average mIoUs with level 2 parts of Chair and Table
in PartNet [5]. Due to the lack of utterances in the CiC dataset in-
cluding words for the finer-grained parts, synthetic utterances are
used. The results in the third column are the case shown in Part-
Net [5] when the network is fully supervised with the ground truth
segments. Compared with that, our network learning only from
referential language shows comparable results. For each category,
the highest mIoU is marked in bold.

Category PN-Agnostic PN-Aware Supervised [5]

Chair 35.3 32.7 38.2
Table 44.0 33.7 34.3

In our experiments so far, we used the four part classes
(back, seat, leg, arm) of Chair in ShapeNet to match the ma-
jority of part names used in CiC utterances. To experiment
with more parts, we would require a new reference game
dataset that contains new part names in descriptions.

Here, we demonstrate experimental results with syn-
thetic reference games created using the parts in PartNet [5].
We tested with two categories separately: Chair and Ta-
ble. Among the parts in level 2 of the PartNet hierarchy, we
randomly sample one of them and synthesize an utterance
with template sentences (shown in Figure S2) indicating the
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existence or absence of a part. Given the utterance, target
and distractor shapes are also randomly sampled based on
part existence. Part classes which are present or absent in
less than 10% of shapes are excluded. Figure S2 illustrates
some qualitative results. Finer-grained parts such as frame,
support, and stretcher are accurately discovered. Table S7
also shows the average mIoUs, which are comparable with
the supervised segmentation result using PointNet, shown
in Table 3 of PartNet [5]. The average mIoUs for both PN-
Agnostic and PN-Aware network trained on this dataset are
35.3 and 32.7 respectively, which are comparable with the
supervised segmentation result using PointNet (38.2) shown
in Table 2 of PartNet [5]. (But we also note that the super-
vised segmentation result in PartNet is the case when using
the entire set of level 2 parts without any exclusion.)

S.9. Implementation Details

For Per-Super-Segment Encoder g, we used a simplified
version PointNet [7]. Our network takes a set of points in-
cluded in each super-segment as input and processes the
points using 64-dimensional linear layers with BatchNorms
and ReLUs. The features of each point are then max-pooled
to produce the feature of the super-segment.

In the utterance encoders fa(·) and fc(·), the dimensions
of the word embedding and the LSTM hidden states are set
to 100 and 64, respectively. The word attention method in-
troduced in ShapeGlot [1] is used. In the cross attention
module, a single attention layer is used, which is followed
by an MLP and LayerNorm.

We train our networks for 30 epochs with batch size
64 and use the ADAM [3] optimizer. The initial learn-
ing rate is 10−3 and decayed by a polynomial scheduler
(power=0.9). Both regularization losses LCE and LCoseg
are weighted by 10−2. When computing cross entropy for
the target shape classification and also for the regulariza-
tion loss LCE, we follow ShapeGlot [1] and use the label
smoothing technique introduced by Szegedy et al. [8] with
the same parameters.

Sections for more qualitative results are
in the following pages.
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S.10. More Segmentation Results

In the following, we provide more results of the part segmentation for Chairs, Tables, Lamps, Airplanes, and Cars, as
shown in Figure 1 in the main paper. All the examples in the figure below are randomly sampled.

Input
(Super-Seg.)

Back Seat Leg Arm Output
Segments

GT
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(Super-Seg.)

Back Seat Leg Arm Output
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Input
(Super-Seg.)

Back Seat Leg Arm Output
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S.11. More Comparisons Results

We also provide more results of the comparison with the other methods below, as shown in Figure 4 in the main paper.
All the examples in the figure below are randomly sampled.

GT PN-Agnostic
(Ours)

PN-Aware
(Ours)

Points P → Sp.-Seg. w/o
Unit Norm

σ(X) → i σ(X) → k σ(X)
→ i → k

w/ Global Feat. w/o LCE
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GT PN-Agnostic
(Ours)

PN-Aware
(Ours)

Points P → Sp.-Seg. w/o
Unit Norm

σ(X) → i σ(X) → k σ(X)
→ i → k

w/ Global Feat. w/o LCE
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GT PN-Agnostic
(Ours)

PN-Aware
(Ours)

Points P → Sp.-Seg. w/o
Unit Norm

σ(X) → i σ(X) → k σ(X)
→ i → k

w/ Global Feat. w/o LCE
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