
Modeling sRGB Camera Noise with Normalizing Flows
—Supplemental Material—

Shayan Kousha1, 3,*, Ali Maleky1, 3, *, Michael S. Brown3, Marcus A. Brubaker1,2,3

1York University 2Vector Institute 3Samsung AI Center–Toronto

1. Scale and Translation Functions
Here we provide more details about the normalzing flow

architecture used in the main paper.

Conditional Affine ()

C
am

er
a

ty
pe

an

d
IS

O

Conditional Linear (CL)

C
am

er
a

ty
pe

an

d
IS

O

Figure 1. Forward pass of the conditional linear flow. Functions
fs and ft are responsible for calculating the scale and bias terms,
respectively. These terms are later applied to the input image x to
calculate the output of this layer.

Conditional Linear Flow To condition on camera types
and ISO levels, this layer creates a one-hot encoding of the
camera-ISO pairs. For example, in our training and testing
steps, we use images from five smartphones with five differ-
ent ISO levels. This means the one-hot encoding of the pairs
is a vector of size 25. fs : R25 −→ R3 and ft : R25 −→ R3

functions have one scale and bias parameter for each chan-
nel for a given camera-iso representation. Since we have
25 camera-ISO pairs and are working with three-channel
sRGB data, each of the two functions has a set of parameters
with shape (25, 3). The two functions use the one-hot vec-
tors to index into these parameters. As a result, the output of
each function is a vector of size 3 (one value per channel).

*Work performed while interns at the Samsung AI Center–Toronto.

Conditional Affine Coupling

B

C
am

er
a

ty
pe

an

d
IS

O
 LS

exp

Figure 2. Forward pass of the conditional affine coupling layer.
fs,t calculates the bias (B) and log scale (LS) from the clean image
and one channel of the input data. A rescaling term is calculated
from the camera type and ISO setting and applied to LS by fcs
function. Later the rescaled LS is used along with the bias term
and the remaining two channels of the input image to calculate
yB . yB is one part of the output.

The values corresponding to each channel are later applied
to all pixels in that channel.

Conditional Affine Coupling As shown in Figure 2, to
condition on all three variables, namely the clean image,
camera type, and ISO level, fcs and fct functions consider
these variables in two steps. First, the clean image is con-
catenated with one subset of the input data and passed to a
CNN model (fs,t) to calculate the log scale and bias factors.
Then, the camera type and gain setting are encoded into
one-hot vectors separately. In our case, each encoding vec-
tor has a size of 5. The one-hot encoding vectors are con-
catenated and passed to a residual network (fr : R10 −→ R)
to calculate a rescaling factor. This rescaling factor is mul-
tiplied by the log scale factor calculated earlier to get the
final scaling values. The bias term is returned untouched.

1

These functions have the form:

LS,B = split(fs,t(x
A, I))

fct(x
A|I, c,g) = B

fcs(x
A|I, c,g) = exp(LS ∗ fr(c,g))

where fe is the one-hot encoder, and LS and B are the log
scale and bias factors, respectively.

2. Inverse Gamma
RAW-rgb images go through an in-camera imaging

pipeline that transforms the image from the RAW-rgb space
to the sRGB domain. The steps in this pipeline introduce
non-linearities that result in a complex noise distribution in
the sRGB space. One of the main nonlinear steps in this
pipeline is gamma correction which is an invertible pro-
cess. Its inverse is commonly used to approximately lin-
earize sRGB data and can easily be implemented as a nor-
malizing flow transformation. Inverse gamma is defined as
y = xgamma where the default value of gamma is 2.2. In
this section, we explore the effects this layer has on Noise
Flow and our proposed model when added to the data pro-
cessing step.

Figure 3. gamma value changes in the training process.
gamma converges to 1.2 for both models.

Model NLL DKL #Params
Noise flow 3.311 0.198 2330
Our model 3.072 0.044 6160

Inverse gamma + Noise flow 3.322 0.181 2332
Inverse gamma + Our model 3.092 0.061 6162

Table 1. Models with the inverse gamma transformation added to
their data processing step have similar performances as the original
models.

Table 1 shows that using the inverse gamma layer does
not improve the modeling and sampling performances. Fig-
ure 3 shows that gamma gamma converges to 1.2 from the
initial value of 2.2 resulting in a near identity transformation
for both models.

3. Architecture Search
There are many more approaches and flow based trans-

formations that can be used to form the flow block of our
model. Here we introduce a few more novel conditional
transformations and explore their modeling capabilities.

3.1. Conditional Transformations

Conditional Spline Coupling

C
am

er
a

ty
pe

an

d
IS

O

g

Figure 4. Forward pass of the conditional spline coupling layer.
Function f calculates the bins’ parameters from the clean image
and one of the input channels. Later some of these parameters
are rescaled using the rescale term calculated by fr from the one-
hot encodings of camera and gain settings. Finally, the updated
parameters are passed to function g introduced in the neural spline
paper [1]. This function is responsible for calculating the output
of this layer.

Conditional Spline Coupling (CSC) This layer is an ex-
tension of the neural spline layer [1]. We extend the neural
spline transformation to condition on the clean image, cam-
era type and gain setting. Here, we outline the procedure to
condition on these variables:

As shown in Figure 4, the clean image, I , is concatenated
channel-wise with xA and passed to function f to calcu-
late the parameters of the bins. Then, similar to the con-
ditional affine coupling layer, the camera and gain settings
are encoded into one-hot vectors separately. fr : R10 −→ R,
which is an arbitrary function, takes the resulting vectors
as input and outputs a scale factor. In our experiments we
use a residual network architecture. The scale factor is later
used to rescale the bins’ width and height parameters. The
conditional spline coupling layer is defined as follows:

ΘW ,ΘH ,ΘD = f(xA, I)

ΘW ,ΘH = (ΘW ,ΘH) ∗ fr(c,g)

yB = g(xB |ΘW ,ΘH ,ΘD)

where function g is the same function used in the standard
neural spline flows. The inverse and log determinant of this

Conditional Affine ()

B

C
am

er
a

ty
pe

an

d
IS

O
 LS

exp

Figure 5. Forward pass of the conditional affine layer conditioned
on the clean image, camera type and gain signal. fs,t calculates
the bias (B) and log scale (LS) from the clean image. The camera
type and ISO setting are used to learn a rescaling factor which is
later applied to LS by fcs function. Finally, the rescaled LS is used
along with the bias term and the input image to calculate y.

layer can be calculated by following the same procedure
used by the unconditional neural spline layer.

Similar to the affine coupling layer, the step that condi-
tions on the clean image is independent of the step that con-
ditions on the camera and gain. This allows us to use this
layer in multiple ways in our experiments in Section 3.2.

Conditional Affine (CA) The nature of the noise and the
subsequent non-linear processing is heavily determined by
the underlying noise free image and the specific camera and
gain (or ISO) settings used. To account for this, we intro-
duce linear flow layers, which are conditioned on combina-
tions of important variables including the camera, c, gain
setting, g, and the underlying clean image, I. This layer
comes in two forms depending on which subset of variables
it is considering:

Conditioned on Clean Image, Camera and ISO
(CAI,c,g): This layer is similar to the conditional affine
coupling layer. The only difference is that this layer does
not split the input dimension. It calculates the scale and
bias and applies them to all input dimensions. This layer
has the following form:

y = x� fcs(I, c,g) + fct(I, c,g),

where x and y are the input and output of this layer, respec-
tively. fcs and fct are similar to the functions used by the
affine coupling layer with not taking xA as an input being
the only difference. As a result, fs,t, which is defined ear-
lier, only uses the clean image to calculated the log scale
and bias terms calculated. Later a rescaling factor is gener-
ated from the encoding of the camera type and ISO setting
and applied to the log scale term. Similar to the CAC layer,

Conditional Affine ()

B

LS

exp

Figure 6. Forward pass of the conditional affine layer conditioned
on the clean image. fs,t calculates the bias (B) and log scale (LS)
from the clean image. These factors are applied directly to the
input image to calculate the output of this layer.

the inverse and log determinant of this transformation can
be easily calculated.

Conditioned on Clean Image (CAI): fcs and fct of
CAI,c,g use a two step process to calculate the scale and
bias terms. First, they calculated the log scale and bias
terms. Then, a rescale term is learned from variables such
as gain and applied to the scale factor. These two steps are
independent of each other and can be applied separately. In
this layer, we only use the first step to learn the log scale
and bias terms from the clean image. This layer has the
following form:

LS,B = split(fs,t((x
A, I))

y = x� exp (LS) + B

Since the second step of fcs and fct is not applied in this
layer, information learned from the clean image is directly
used to scale and shift the input data with out being rescaled.
In Section 3.2 we investigate whether such direct transfer of
information from the underlying clean representation to the
noise image is beneficial.

3.2. Experiments

In this section, we consider multiple architectures for the
flow block . The goal is to understand what combination
of layers results in better modeling and generative perfor-
mance. In our experiments, unless otherwise specified, all
coupling layers are preceded by an invertible 1x1 convolu-
tion layer. Additionally, the coupling layers come in pairs.
As a result, we have ”x2” next to the coupling layers in our
tables.

First, we investigate the effects of unconditional layers.
Table 2 summarizes the results of experiment. The model
defined in the first row uses two spline coupling layers as
the unconditional step followed by some conditional lay-
ers. The model described in row two is similar to the first
model with the exception that unconditional layers are elim-
inated. Even though this model has fewer parameters due

Uncond. g and c I I, g, and c NLL DKL

SCx2 CL CAI CSCx2 4.238 0.229
- CL CAI CSCx2 3.076 0.141

ACx2 CL CAI CACx2 4.147 0.183
- CL CAI CACx2 3.602 0.104

Table 2. Unconditional layer experiment. Models in this ta-
ble use 1 flow block (S = 1). Removing the unconditional layer
and keeping conditional layers untouched improves the perfor-
mance of the models. This trend is independent of the type of
unconditional layer used in these models. Models that use un-
conditional/conditional affine coupling layers achieve better DKL

compared to the models that use unconditional/conditional spline
coupling layers. A lower DKL suggests better generated samples.

to the lack of unconditional layers, it outperforms the first
model in both metrics. Eliminating the unconditional lay-
ers results in a 1.162 nats/pixel improvement of NLL. The
third row replaces the unconditional/conditional spline cou-
pling transformations with unconditional/conditional affine
coupling layers. A similar pattern of improvement emerges
when this model is compared with the last row where the
unconditional layers are removed. Our last model achieves
an NLL of 3.602 which translates to a 0.545 nats/pixel im-
provement. Additionally, when compared to the second
row, the last row reveals that the conditional affine coupling
(CAC) layer is a better fit in terms of DKL than the con-
ditional spline couplin (CSC) layer for conditioning on the
clean image, camera type, and gain setting. As a result, we
use the model in row four as a base for our next experiment.

The next experiment is designed to show the effects of
layers only conditioned on the clean image. The three mod-
els shown in Table 3 are identical with their choice of layer
for conditioning on the clean image being the only differ-
ence. The results suggest removing the layer that only con-
ditions on the clean image improves the performance in
terms of DKL but might worsen the NLL results. We find
DKL to be a better indicator of the quality of the samples
and prefer simpler model. Therefore, we conclude that there
is no need to have a specialized layer to solely condition on
the clean image. As shown in Table 3 the model defined in
row three achieves a DKL value of 0.077 which is the best
result achieved so far. As a result, we include this model in
Table 4 to help with our next experiment.

The previous experiments show that having an uncondi-
tional layer and a layer that only conditions on the clean
image is not necessary. The third experiment focuses on
the conditional transformations that either utilize ISO and
camera type information or use all three variables. Table 4
summarizes the experiment and shows CL CACx2 model
and CL CAI,c,g with one flow block achieve the best DKL

performances with values of 0.077 and 0.063, respectively.
Given the architectural design choices we made, the models

g and c I I, g, and c NLL DKL

CL CAI CACx2 3.602 0.104
CL CSCx2 CACx2 2.901 0.163
CL - CACx2 3.473 0.077

Table 3. Clean image only experiment. Models in this table use 1
flow block (S = 1). Adding a specialized layer to only condition on
the clean image harms DKL but it might improve (reduce) NLL.
We consider two specialized layers for conditioning on the clean
image, namely CAI and CSCx2. They both fail to improve the
model performance in terms of DKL.

ISO and Cam Clean, ISO, and Cam NLL DKL

CAc,g CACx2 3.473 0.077
CAc,g CSCx2 3.064 0.159
CAc,g CAI,c,g 3.636 0.063
CACx2 CAI,c,g 3.522 0.099

Table 4. Conditioning on all variables. Models in this table use 1
flow block (S = 1). The choice of transformation for conditioning
on ISO, camera type, and clean image has a significant impact on
the overall performance of the normalizing flows model. CAc,g

seems to be the best choice for conditioning on gain and camera as
the models containing this layer achieve the best NLL and DKL.

Flow Blocks (S) g and c I, g, and c NLL DKL

1 CAc,g CACx2 3.473 0.077
1 CAc,g CAI,c,g 3.636 0.063
4 CAc,g CACx2 3.072 0.044
4 CAc,g CAI,c,g 3.639 0.060

Table 5. Model depth. Increasing the number of flow blocks
improves the noise modeling capabilities of the NF models. The
model in row three achieves the best performance in terms of DKL

compared to other models.

can easily be made deeper by increasing the number blocks.
Table 5 shows the performance of these two models

when the number of blocks is 4. The results suggest mak-
ing a model deeper improves the results. For example,
CL CACx2 with 4 repeated flow blocks achieves the best
NLL with 0.401 nats/pixel improvement over the same
model architecture with only one flow block. CL CACx2
model with four blocks outperforms the other models in this
table in both metrics. It achieves NLL and DKL of 3.072
and 0.044, respectively. This is the same model as the model
we introduced in the paper.

References
[1] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios,

“Neural spline flows,” in Neurips, 2019. 2

KL = 0.099KL = 0.192KL = 0.260

KL = 0.036 KL = 0.054 KL = 0.032

KL = 0.136 KL = 0.232 KL = 0.064

KL = 0.015KL = 0.087KL = 0.029

KL = 0.082 KL = 0.107 KL = 0.101

KL = 0.022 KL = 0.019 KL = 0.023

KL = 0.081KL = 0.077KL = 0.178

KL = 0.042KL = 0.132KL = 0.072

(h) Noise free(g) Real noise(f) Our model(e) Noise Flow(d) Full Gaussian

KL = 0.275

KL = 0.038

KL = 0.194

KL = 0.076

KL = 0.266

KL = 0.041

KL = 0.184

KL = 0.076

KL = 0.173

KL = 0.073

KL = 0.249

KL = 0.023

KL = 0.140 KL = 0.146 KL = 0.156

KL = 0.036 KL = 0.053 KL = 0.049

KL = 0.012 KL = 0.017

KL = 0.093

KL = 0.018

KL = 0.100 KL = 0.102

(b) Heteroscedastic
Gaussian

(a) Diagonal
Gaussian

(c) Isotropic
Gaussian

IS
O

-1
00

IS
O

-4
00

IS
O

-8
00

IS
O

-1
60

0

Figure 7. Generated samples from our model and all baselines. Samples from our model have noticeable visual similarities with the real
noisy samples. Our samples achieve the lowest DKL in almost all cases, showing its ability to generate realistic noise.

(a) Noise free (b) Noisy input (e) Noise Flow

PSNR = 37.872

PSNR = 35.398

PSNR = 35.613

PSNR = 32.616

PSNR = 30.387

PSNR = 40.696

PSNR = 39.093

PSNR = 37.622

PSNR = 32.182

PSNR = 28.749

PSNR = 34.503

(i) Heteroscedastic
Gaussian

PSNR = 40.892

PSNR = 36.591

PSNR = 38.942

PSNR = 32.881

PSNR = 30.093

PSNR = 28.742

(g) Diagonal
Gaussian

PSNR = 40.828

PSNR = 38.555

PSNR = 38.157

PSNR = 31.587

PSNR = 30.157

PSNR = 34.357

(h) Isotropic
Gaussian

PSNR = 39.484

PSNR = 38.235

PSNR = 35.316

PSNR = 29.815

PSNR = 28.037

PSNR = 32.810

PSNR = 40.846

PSNR = 41.256

PSNR = 39.027

PSNR = 36.642

PSNR = 34.049

PSNR = 33.517

PSNR = 40.212

PSNR = 39.565

PSNR = 39.009

PSNR = 35.567

PSNR = 32.031

PSNR = 30.593

(d) DnCNN-real(c) Our model (f) Full Gaussian

PSNR = 33.574

Figure 8. Denoising results on SIDD-Validation from denoisers trained on noisy images from (c) real noisy images of SIDD-Validation,
(d) our model, and (e, i) all of our baselines.

