
Appendix: Unseen Classes at a Later Time? No Problem

This appendix provides additional details that could not
be included in the main manuscript owing to space con-
straints. In particular, we provide:

• Details of datasets chosen for studies.
• Details of task-wise data splits for each of the three

problem settings: Static, Dynamic, Online
• Metrics used for evaluating our model.
• Qualitative results depicting the similarity scores of vi-

sual features across tasks.
• Analysis of the generative module

– t-SNE visualizations to show contribution of var-
ious components of our approach and compar-
ison with sequentially trained generative ZSL
baseline.

– Performance of the model on varying the number
of replayed samples.

• Implementation details of our method.

Code for all experiments can be accessed at :
https://github.com/sumitramalagi/Unseen-classes-at-a-
later-time

A1. Dataset Details
In this section, we provide a detailed description of the

benchmark datasets used for evaluating our model in the
static, dynamic and online CGZSL settings. Following the
existing literature [6–9, 26] we assess our proposed model
on five widely used benchmark datasets i.e AWA1, AWA2,
CUB, SUN, aPY, which are traditionally used for zero-shot
learning. (Zero-shot recognition datasets are used since
we require access to semantic attributes for addressing the
CGZSL problem [6–9, 26])
The Animals with Attributes dataset (AWA1 and AWA2)
[11] consists of 50 classes of animals captured in diverse
backgrounds. AWA1 consists of 30,475 images and AWA2
consists of 37,322 images. They are split into 40 seen
classes and 10 unseen classes. The dataset also contains an
85-dimensional attribute vector for each class which is an-
notated by a human. Caltech UCSD Birds 200 (CUB) [28]
dataset consists of 11,788 images of birds in total, each
of which belongs to one of the 200 classes. In a stan-
dard generalized zero-shot learning (GZSL) setup, 150 of

Dataset Attribute # Images Seen Class Unseen Class
AWA1 85 30,475 40 10
AWA2 85 37,322 40 10
aPY 64 15,339 20 12
CUB 312 11,788 150 50
SUN 102 14,340 645 72

Table A1. Details of datasets used for zero-shot learning

these classes are treated as seen and 50 classes are unseen.
Each class in CUB has nearly 60 samples. In the CUB
dataset, each class is also provided with a 312-dimensional
human-annotated class attribute vector. The scene recogni-
tion dataset (SUN) [21] consists of 717 scenes or classes.
Out of 717 classes, 645 classes are seen and the rest 72
are unseen. This dataset contains 14,340 fine-grained im-
ages and each class is associated with a 102-dimensional
attribute. In aPY [3] dataset, there are 15,339 total images
belonging to 32 classes. 20 of these classes are treated as
seen and 12 are unseen. Each class is associated with a
64-dimensional attribute. We summarize the details of all
datasets in Table A1.

Following protocol in [6, 7, 9, 27, 32], the visual features
for all datasets are extracted using ResNet-101 pretrained
on Imagenet dataset. We use the publicly available version
of benchmark datasets provided by [32].

A2. Task-wise Data Splits
Unlike traditional GZSL methods where all classes are

available during training/testing, continual GZSL (CGZSL)
settings work on incremental tasks. As described in Sec. 3
of the main manuscript, the pattern in which new classes
arrive in CGZSL depends on the setting (static, dynamic,
online). Details of the task-wise split for standard zero-
shot learning datasets with respect to various settings is de-
scribed below:

Static CGZSL: For the static CGZSL setting, we follow
the dataset split mentioned in [6, 8, 9]. For a given task Tt,
the first t subsets i.e data belonging to the current and pre-
vious tasks are considered as seen while the rest are unseen.
We divide AWA1 and AWA2 datasets into 5 tasks. The first
task consists of 10 seen classes and 40 unseen classes. In
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Task-1 Task-2 Task-3 Task-4 and more
Seen (Replayed+New) Unseen Seen(Replayed+New) Unseen Seen(Replayed+New) Unseen ... ...

aPY
Static 0+8 24 8+8 16 16+8 8 ... ...
Dynamic 0+5 3 5+5 6 10+5 9 ... ...
Online 0+4 4 4+5 7 9+5 10 ... ...

AWA-1
Static 0+10 40 10+10 30 20+10 20 ... ...
Dynamic 0+8 2 8+8 4 16+8 6 ... ...
Online 0+7 3 7+8 5 15+8 7 ... ...

AWA-2
Static 0+10 40 10+10 30 20+10 20 ... ...
Dynamic 0+8 2 8+8 4 16+8 6 ... ...
Online 0+7 3 7+8 5 15+8 7 ... ...

CUB
Static 0+10 190 10+10 180 20+10 170 ... ...
Dynamic 0+7 2 7+7 4 14+7 6 ... ...
Online 0+6 3 6+7 5 13+7 7 ... ...

SUN
Static 0+47 670 47+47 623 94+47 576 ... ...
Dynamic 0+43 4 43+43 8 86+43 12 ... ...
Online 0+42 5 42+43 9 85+43 13 ... ...

Table A2. Data-splits across all datasets for Static, Dynamic and Online settings. During each task, seen classes is the combination of
replayed classes from previous task and newly added seen classes.

each subsequent task we convert 10 of the unseen classes
to seen. At the end of fifth task all the 50 classes of AWA1
and AWA2 dataset are converted to seen. SUN dataset is
divided into 15 tasks with 47 unseen classes getting con-
verted to seen in each task. CUB dataset is divided into
20 tasks where we incrementally convert 10 unseen classes
into seen. aPY is split into 4 tasks, with each new task 8
previously unseen classes are converted to seen class.

Dynamic CGZSL: In the dynamic CGZSL setting, new
seen and unseen classes are added in each task. AWA1 and
AWA2 datasets are divided into five tasks. In each task, 8
new seen and 2 new unseen classes are added. SUN dataset
is divided into 15 task, where 43 seen classes and 4 un-
seen classes are added in each task. CUB dataset is divided
into 20 tasks, where 7 seen classes and 2 unseen classes are
added in each task. The aPY dataset consists of four tasks,
with 5 seen classes and 3 unseen classes in each task.

Online CGZSL: In our proposed online-CGZSL setting,
each task has a disjoint set of seen and unseen classes. In
addition, some of the previously unseen classes can turn
into seen if the corresponding visual features become avail-
able for training in future tasks. To evaluate our model
we consider the case where one of the previously unseen
class is converted to seen class. AWA1 and AWA2 datasets
are divided into five tasks. Every task consists of seven
seen classes and three unseen classes. In addition, for each

of task numbers two to five, one of the previously unseen
classes is converted to a seen class. SUN dataset is divided
into 15 tasks with 42 seen and 5 unseen classes. 6 seen and
3 unseen classes are added in each task for the CUB dataset
over 20 tasks. aPY dataset is divided into four tasks with
four seen and unseen classes. Similar to AWA1 and AWA2,
one of the previously unseen classes is converted to a seen
class during each task for CUB, SUN and aPY datasets. The
data-splits for all settings are listed in the Table A2.

A3. Evaluation Metrics
Static setting: We follow the evaluation metrics mentioned
in [26]:

• Mean Seen Accuracy (mSA)
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Figure A1. Cosine similarity scores of unseen class ’dolphin’ of AWA2 dataset w.r.t identifier projection. Top 3 cosine similarity scores
shared with ’dolphin’ at every task is shown. Unseen classes are depicted in red, seen classes are in black.

Here, CAcc stands for per class accuracy, H represents har-
monic mean, T denotes the total number of tasks, D≤t

te de-
notes test data till tth task,which according to setting-1, cor-
responds to seen data and D>t

te denotes test data of future
tasks with respect to tth task. As per static setting, future
task data is the unseen data. A denotes the set of all at-
tributes.

Dynamic setting: We use a similar evaluation metrics as
mentioned in [6, 7] :

• Mean Seen Accuracy (mSA)
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Here, CAcc stands for per class accuracy, H represents
harmonic mean, T denotes the total number of tasks, D≤t

tes

denotes test data of seen classes till tth and D≤t
teu denotes

test data of unseen classes till tth task. A≤t denotes the set
of all attributes encountered so far.

Online setting: We use the evaluation metrics proposed in
dynamic setting considering the updated set of seen and un-
seen classes for calculating accuracy.

We re-calculate each task’s accuracy in order to obtain
the average accuracy for a given task.

A3.1. Additional Evaluation Metrics

mAUSUC: [26] adopted the mean area under seen/unseen
curve (mAUSUC) as metric for measuring the performance
of CGZSL models across all tasks. mAUSUC is given by:

mAUSUC(F ) =
1

T

T∑
t=1

AUSUC(F,D≤t
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≤t) (A7)

where T is the total number of tasks encountered so far,
D≤t

te is the test data consisting of both seen and unseen
classes and A≤t is the set of attributes encountered so far.
We compare our mAUSUC score with recent state-of-the-
art approaches such as NM-ZSL [26], Tf-GCZSL [7] and A-
CZSL [8]. Figure A7 shows task-wise mAUSUC on AWA2
dataset in all three settings. A higher value of mAUSUC in-
dicates that the model is better able to handle bias between
seen and unseen classes. We observe that our model’s per-
formance is superior to the existing state-of the art CGZSL
methods.

A4. Task-wise Similarity Scores of Visual Fea-
tures

In the CGZSL settings, seen/unseen classes are added
incrementally. Our model retains the previously learned
knowledge using incremental bi-directional alignment (Sec.
4.3) and generative replay of visual features from the pre-
vious classes (Sec. 4.4). The incremental bi-directional
alignment loss is a combination of nuclear loss and seman-
tic alignment loss. Nuclear loss helps in aligning identifier
projections in accordance with the real visual features and
semantic alignment loss aids in strengthening semantic rela-
tionships and knowledge transfer as the visual space evolves
and new classes are added over time.

In this section, we analyze how applying semantic align-
ment mechanism incrementally helps in generating better
visual features by strengthening semantic relationships as



Figure A2. Number of replayed samples vs Mean Harmonic accuracy (mH), Mean Seen accuracy (mS) and Mean Unseen accuracy (mU)
on all datasets in Static-CGZSL setting. We observe that fine-grained datasets like CUB and SUN perform well when the number of
replayed samples is less. Performance of coarse-grained datasets like AWA1 and AWA2, saturates when the number of replayed samples
is more than two hundred.

new classes are added. Since real visual features for un-
seen classes are not available during training, the semantic
alignment loss Lsal, tries to leverage semantic structure of
all the classes encountered so far and generate accurate un-
seen features. The seen normalized loss Lsnl discussed in
Sec. 4.2, helps the discriminator to place the identifier pro-
jection of unseen classes close to the generated unseen fea-
tures. Furthermore, the semantic alignment loss is applied
with respect to nc nearest neighbours of class c. As the
class distribution changes with time due to dynamic addi-
tion of new classes, the visual space evolves and the nearest
neighbours for a particular unseen class changes. As new
classes that are semantically similar to a given unseen class
arrive, performing semantic alignment with nearest classes
incrementally helps in further enhancing semantic relation-
ships w.r.t new class distribution and improving the quality
of generated unseen class features.

Figure A1 shows cosine similarities calculated during in-
ference between the unseen class ’dolphin’ of the AWA2
dataset and the most closely related seen-unseen classes (in
terms of identifier projections) across different tasks. We
observe that the alignment of the identifier projections with
semantically similar classes during each task. While the
model predicts ’dolphin’ correctly across the 5 tasks, during
task-1, with the available seen and unseen classes, ’dolphin’
shares a cosine similarity score of 0.1349 with the identifier
projection of the unseen class ’persian cat’. With the ad-
dition of new seen and unseen classes during task-2, ’dol-
phin’ now shares a cosine similarity of 0.2737 with ’skunk’
rather than ’persian cat’ whose cosine similarity dropped to
0.1024 . This distinctly shows that the semantic alignment
loss is helping to improve the representation of generated
unseen features. The generated unseen features guide dis-
criminator in mapping identifier projections, which in turn
aid in classification. It can be seen that at the end of task-5,
’dolphin’ shares high cosine similarity scores with identi-
fier projection of classes ’killer whale’ and ’seal’ which are
visually close. This shows how the model leverages cur-
rent semantic structure to learn better identifier projections

as new classes are added.
More such examples are shown in Figure 4 presented

in the main manuscript (which we explain here owing to
space constraints) and Figure A5. In Figure 4, for the un-
seen class ’sheep’ of the AWA2 dataset encountered during
task-1, the similarities with identifier projection of ’killer
whale’ and ’skunk’ classes are 0.2765 and 0.2533. With
the addition of new seen and unseen classes during task-
2, ’sheep’ now shares a cosine similarity of 0.4380 with
’gorilla’ rather than ’killer whale’ whose cosine similarity
dropped to 0.2543 . Note however that the ’sheep’ class
is classified correctly in all tasks. Figure A5 illustrates an
example from the aPY dataset, where the unseen class ’mo-
torbike’ shares high cosine similarity score with the iden-
tifier projection of bicycle class. Since ’bicycle’ and ’mo-
torbike’ are visually very similar, ’bicycle’ has the highest
cosine similarity with ’motorbike’ in spite of new classes
being added. We can observe that cosine similarity between
visually related samples keeps increasing as new tasks ar-
rive, ensuring better alignment between the identifier pro-
jections.

A5. Analysis of Performance of Generative Re-
play Module

t-SNE plot visualization: Our model uses generative re-
play to overcome catastrophic forgetting. We visualize the
generated visual features of AWA1 dataset per task (Fig-
ure A6) and observe that generated visual features form
well-defined clusters. The features belonging to same class
are grouped together and far from other classes, this signi-
fies that the generator is able to generate discriminative vi-
sual features. Since f-CLSWGAN [32] is a GAN-based ap-
proach for solving GZSL problems, we compare the visual
features generated by our model with the sequential ver-
sion of f-CLSWGAN (Seq-fCLSWGAN) [32]. We notice
that well-defined clusters are formed during task-1 of Seq-
fCLSWGAN training, but subsequently it tends to forget the
acquired knowledge and the newly generated features tend



Figure A3. Number of replayed samples vs Mean Harmonic accuracy (mH), Mean Seen accuracy (mS) and Mean Unseen accuracy (mU) on all datasets
in Dynamic-CGZSL setting. We observe that performance of coarse-grained datasets like AWA1 and AWA2 increases, if the number of replayed samples is
more than hundred.

Figure A4. Number of replayed samples vs Mean Harmonic accuracy (mH), Mean Seen accuracy (mS) and Mean Unseen accuracy (mU) on all datasets
in Online-CGZSL setting. For fine-grained datasets like SUN, we can notice that replaying lesser samples helps to boost the performance as the number
of samples per class are less in SUN dataset. Coarse-grained datasets like AWA1, AWA2 and aPY perform well when the number of replayed samples are
more.

to get mixed up in the visual space. We perform ablation
study on the proposed approach and show that removing
incremental bi-directional alignment and classification loss
deforms the clusters across all tasks.

Varying number of replayed samples: We evaluated the
performance of our model by varying the number of sam-
ples replayed. We compare the number of samples with
mean harmonic accuracy (mH), mean seen accuracy (mS)
and mean unseen accuracy (mU) in all the three settings
and all the datasets. We plot the results in Figure A2 (static)
, A3 (dynamic) and A4 (online). We observe that across
all settings AWA1, AWA2 perform well when the number
of replayed samples is more than 100. We use a replay of
300 for AWA1, AWA2 dataset in our main manuscript. aPY
dataset has only 32 classes in total, hence to avoid overfit-
ting we replay only 150 samples per class.

SUN and CUB are fine-grained datasets, and each class
has limited data which makes these datasets challenging.
In order to mimic the original dataset, we replay only 150
samples per task for CUB and only 20 samples per task for
the SUN dataset.

A6. Implementation Details

Our model is implemented using Pytorch-1.4.0 and
CUDA-11.2.

The proposed approach consists of a generator G and

discriminator D.
We use Adam optimizer with a learning rate of 0.005

and weight decay of 0.00001 for all settings and datasets.
We normalize both target image and attributes before cal-
culating cosine similarity. The total G loss is given by: Lt

G

= λ1 LGAN + λ2 Lpcl + λ4 Liba and the overall D loss is
given by: Lt

D = λ1 LGAN + λ2 Lrcl + λ3 Lsnl, where λ1,
λ2, λ3, λ4 are 1.
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Figure A5. Cosine similarity scores of unseen class ’motorbike’ of aPY dataset. Top three cosine similarity scores shared with ’motorbike’
at every task is shown. Unseen classes are depicted in red, seen classes are in black.

Figure A6. t-SNE visualizations of visual features generated by Seq-fCLSWGAN (Row 1), our method without incremental bi-directional
alignment (Liba) and real classification loss (Lrcl) (Row 2) and our overall approach (Row 3) during various tasks for AWA1 dataset.
Different colors depict different seen classes.

Figure A7. Task-wise mean AUSUC values for static (left), dynamic (center) and online (right).


