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1. Details of Data Filtering and Model Fitting
As mentioned in Section 3.5 of the main paper, we use the

alignments obtained from the description model to extract
individual repetitions for all motion concepts from the train-
ing dataset. For each motion concept c, we obtain a dataset
of occurrences Dc = {d1, d2, · · · } where each element di
corresponds to a small segment composed of a sequence of
spline curves di = {s1i , s2i , · · · s

li
i }. Since this dataset Dc

has been obtained from description model predictions, we
perform two steps of filtering to generate cleaner data for
learning our synthesis model.

Length Filtering. First, for each concept c, we compute
the mode of the number of splines used in instances of this
concept, denoted as l∗c = mode ({li}) and then filter out all
di’s whose number of splines is not l∗c . It is possible to fit
a synthesis model for each length and sample from each of
these models but for simplicity we only consider models
with a fixed number of primitives per class.

Similarity Filtering. We use the already annotated sin-
gle repetition examples as the ground truth reference
{g1, g2, · · · }. We define the distance (distance) between di
and gj as the average L2 distance between four points sam-
pled at equal distance across all spline curves {s1i , s2i , · · · s

li
i }

(note that the number of splines in di and gj must match due
to the first-step length filtering). Next, we filter out di if
minj distance(di, gj) > F . Here, F is a hyperparameter
which controls the error threshold. We choose F = 8 in our
experiments.

Model Fitting. After these two steps of filtering, we now
have dataset D′

c = {d′1, d′2, · · · } where each element d′i is
a sequence of spline curves d′i = {t1i , t2i , · · · t

l∗c
i }. For each

index ℓ with 1 ≤ ℓ ≤ l∗c , we fit a simple Gaussian model

* and † indicate equal contribution. Project page: https://
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over all occurrences

Gℓ
c ∼ N (µ(tl), cov_f · σ(tl)2)

where cov_f is a hyperparameter that controls the variance
of the generated motion. We set cov_f to 0.01 in our experi-
ments and present ablation studies in the following section.
To sample new motion instance d̄, we sample each of Gl

c in
sequence from l set to 1 to l∗c .

2. Inference with Dynamic Programming

Given a primitive sequence S̄, our goal in human mo-
tion description is to infer a label sequence L̄. As de-
scribed in Section 3.3 of the main paper, the inference
of L̄ is equivalent to finding the argmax of p

(
L̄|S̄

)
=∑

C̄∈uncompress(L̄)

∏2K−1
t=1 p

(
ct|S̄

)
, where p

(
ct|S̄

)
is the

concept label sequence predicted by the neural network.
Since there are several possible alignments C̄ ∈

uncompress(L̄) for a given label sequence L̄, the argmax
could be quite expensive to compute in a brute-force manner.
Hence, we use an efficient dynamic programming approach.
The key idea is to compute prefix label sequences for prefix
primitive sequences of L̄ and merge different alignments that
give the same output, which makes the inference and loss
computation tractable. In practice, implementations of CTC
manage this under-the-hood*.

3. Ablation of Covariance Factor

We study the effects of varying covariance factor (cov_f)
on the generated motions. We present the results of our
study in Figure 1. We observe that one can get motions
with increased diversity and multimodality by increasing
the cov_f. We observe that higher cov_f factor leads to less
satisfactory visual quality, even if quantitatively there is only
small drop of the recognition accuracy. Hence, we choose a
lower default value of cov_f but this can be modified by the
user as needed.

*https://distill.pub/2017/ctc/
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Figure 1. Ablating the covariance factor for evaluating action-
conditioned motion synthesis. We compare the FID score, Acc
(recognition accuracy), Div (variance across action classes) and
MM (variance within action classes).

4. Ablation of Window Size
We study the effects of varying the window size (WS) on

the motion description accuracy (SeqAcc). We present the
results of our study in Figure 2. We observe that across all
classes, the performance improves until it plateaus around
WS equal to 9. We also present a breakdown on two specific
classes: Jumping Jacks (JJ) and Torso Twists (TT). We ob-
serve that the easier JJ class achieves high accuracy for all
values of WS while the harder TT class sees improvement
with increasing WS. Intuitively, aggregating temporal con-
text information helps up to certain lengths beyond which it
provides no additional help.

5. Details of the Evaluation Metrics
We use standard metrics used in previous works to evalu-

ate action-conditioned motion synthesis [3,5] and controlled
motion synthesis from descriptions [1, 2, 4]. In this section,
we provide details of how these metrics were computed for
our evaluations.
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Figure 2. Ablating the window size for evaluating human motion
description (SeqAcc). Left: ablation across all classes. Right:
performance breakdown for two classes – Jumping Jacks (JJ, easy)
and Torso Twists (TT, hard).

5.1. Action-Conditioned Motion Synthesis

We evaluate action-conditioned motion synthesis on four
quantitative metrics that together try to capture the correct-
ness and diversity of the synthesized motions. We compute
the FID score, recognition accuracy (Acc), diversity (Div)
and multimodality (MM). We train a simple RNN-based
action classifier on the single repetition examples collected
for each concept class. We use this for computing the recog-
nition accuracy and also as a feature extractor for computing
all other metrics. Closely following Guo et al. [3], we report
the average of 20 independent runs for each metric.

FID score: We extract features of 1000 generated and real
motions each (from test set with replacement). We then
compute the FID between the generated distribution and real
distribution. FID captures the overall quality of the generated
motions.

Accuracy (Acc): We use the RNN-based action classifier
to classify 1000 generated motions into classes. This indi-
cates if the generated motions are recognized as the specified
classes.

Diversity (Div): To capture the variance of generated mo-
tion across classes, we generate two subsets u and v of 200
motions each and extract features {u1, u2, · · · , u200} and
{v1, v2, · · · , v200}. We then compute the diversity metric
defined as

Div =
1

200

200∑
n=1

||un − vn||2.

We use the RNN-based action classifier trained for the
“Accuracy” measure (without the last linear layer for classifi-
cation) as the feature extractor.



Multimodality (MM): To capture the variance of gen-
erated motion within classes, for each motion con-
cept c, we generate two subsets uc and vc of 20 mo-
tions each and extract features {uc,1, uc,2, · · · , uc,20} and
{vc,1, vc,1, · · · , vc,20}. We then compute the multimodality
metric defined as

MM =
1

C × 20

C∑
c=1

20∑
n=1

||uc,n − vc,n||2

We use the RNN-based action classifier trained for the
“Accuracy” measure (without the last linear layer for classifi-
cation) as the feature extractor.

5.2. Controlled Motion Synthesis

We evaluate controlled motion synthesis on two metrics.
For generated pose sequence P = {p1, p2, · · · , pT } and
ground truth pose sequence P̄ = {p̄1, p̄2, · · · , p̄T }, we com-
pute the following two metrics.

Average Positional Error (APE): We define APE as the
L2 distance between the joint keypoints averaged across all
joints over the time duration. Mathematically, it is defined as

APE =
1

J × T

T∑
t=1

∥pt − p̄t∥2.

Since the generated and ground-truth sequences could be of
different lengths, we use Dynamic Time Warping (DTW) [6]
to align these sequences.

Average Variance Error (AVE): We define AVE as the
L2 distance of variances of the generated motion with ground
truth motion. We define variance of joint j as in a pose
sequence P = {p1, p2, · · · , pT } as:

σ(j) =
1

T − 1

T∑
t=1

∥pjt − µj
p∥2,

where µj
p is average location of joint j across the time du-

ration, i.e., µj
p = 1

T

∑T
t=1 p

j
t . Similarly, we can define σ̄(j)

for the groundtruth pose sequence P̄ . We then define AVE
as:

AVE =
1

J

J∑
j=1

∥σ(j)− σ̄(j)∥2.

6. Limitations and Societal Impact
Human motion has favorable structural properties such as

constraints on the motion of keypoints and repetition that our
methods exploit. Our method relies on primitive extraction
which could be difficult in videos with occlusions or noisy

pose detections. It is also not immediately clear how well
these methods translate to motion of other entities.

Our research has potential positive societal impacts, with
future applications in sports training and assistive technolo-
gies in the rehabilitation of disabled persons. On the other
hand, like all other visual content generation methods, our
method might be exploited by malicious users with potential
negative impacts. In our code release, we will explicitly spec-
ify allowable uses of our system with appropriate licenses.
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