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1. Primary differences between MS++ and GS

The most recent attempt to speedup MS is MS++ pro-
posed by Jang and Jiang [5]. The improvement process in
MS++ involves 1) partitioning the input domain into a grid,
2) assigning each data point to its associated grid, and 3)
searching for the estimated mode for each point from its
grid as well as grids within its neighborhood. Although
MS++ is more than 1000x faster than MS, Park [6] claimed
that without parallel computing, MS++ is not sufficiently
fast yet. Therefore, [6] proposed a variant of MS++ known
as α-MS++, which combines the use of an auxiliary hash ta-
ble, a speedup factor (α) to reduce the number of iterations
required until convergence as well as seeking more accu-
rate modes using more numbers of neighboring grid cells
while reducing the size of grid cells to minimize the compu-
tational redundancy of MS++. Although the experimental
results in MS++ and α-MS++ are considerably faster than
MS and MS++, respectively, we will show that GS is still
orders of magnitude faster than both MS++ and α-MS++.
Although both GS and MS++ use grid-based neighborhood
search, the basic framework of GS is different from MS++
in the following aspects:

i) MS++ updates the location of each data point by using
the weighted mean of the data points of 1-neighboring
grid cells. On the other hand, GS updates the centroid
of each active data cell by using the weighted mean of
the centroid of the 1-neighboring active grid cells.

ii) In MS++, the shifted location of all data points asso-
ciated with the same grid cell has the same value at
any particular iteration. In GS, the centroid can also
be treated as the location of all data points associated
with the same grid cells. However, these centroids’ lo-
cations may differ from the shifted location calculated
in MS++ as GS updates centroids in a sequential man-

ner, i.e.,

S(t)(j)←
∑

(v∈{−1,0,1}d) wvS(t)(j + v)∑
(v∈{−1,0,1}d) wv

,

S(t+1)(j) = S(t)(j), ∀j ∈ {1, 2, . . . , k(t)}
(1)

However, MS++ updates in a parallel fashion which is
equivalent to the following equation (in terms of Eqn.
(1).

S(t+1)(j)←
∑

(v∈{−1,0,1}d) wvS(t)(j + v)∑
(v∈{−1,0,1}d) wv

. (2)

For better understanding, in Fig. 1, we show the shift
of centroids for both cases on a sample of nine cen-
troids. As shown in this figure, Eqn. 2 does not take the
neighbor’s updated location into account in the shifting
of centroids. Alternatively, in Eqn. 1, the location of
neighbors that have already been updated in the shift-
ing sequence is used instead of their older location. In
comparison with Eqn. 2, Eqn 1 provides better con-
vergence of data points towards modes. We will add
clearer explanations on this in the final version.
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Figure 1. Shifting of centroids using Eqns. 5 and 6.
iii) The time complexity of MS++ isO(n3d) per iteration,

where n is the number of data points. On the other
hand, the time complexity of the GS is O(m3d) per
iteration, where m << n with the increase of itera-
tions. Therefore, GS is faster than MS++ by n/mavg
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times theoretically, where mavg is the average value of
m throughout the iterations.

2. Theoretical Analysis of GridShift
In essence, Mean Shift is a clustering algorithm based

on the following intuition. For dataset X = {xi}ni=1 ⊆ Rn,
let’s assume the probability density function (PDF) is p(z).
In this dataset, we can expect k clusters if PDF p(z) has
k modes. Additionally, suppose an optimization algorithm,
such as gradient descent, is run with a starting point xm and
converges to the j-th mode. In that case, it can be consid-
ered that the data point xm is part of the cluster that belongs
to j-th mode [4].

The PDF of datasets is not available in practice, and only
the data points are accessible. To implement the intuition
mentioned above, one must first estimate the PDF, a process
known as density estimation [7]. Kernel density estimators
(KDEs) are the most popular method for estimating density.
Let K(z) be the Kernal function satisfying

K(z) ≥ 0, and
∫

K(z)dz = 1, (3)

its KDE is

p̂(z) =
1

n

n∑
i=1

K(z − xi). (4)

In mean shift (MS) algorithms, there are two main kernels
that are employed: the Gaussian kernel

KG(z;h) = c. exp

(
−||z||

2

2h2

)
,

and the Epanechnikov kernel

KE(z;h) = c.max

{
0, 1− ||z||

2

h2

}
,

where c is the constant to ensure that the kernel will inte-
grate to 1 [1–3].

By iterating through the following equation, initialized
at each xi, the MS algorithm attempts to estimate modes of
p̂(z) based on the its KDE [2]:

z ← 1∑n
i=1 g (||z − xi||2)

n∑
i=1

g
(
||z − xi||2

)
xi (5)

where g(||z||2) ∝ −K ′(||z||2), i.e. kernel K(||z||2) is the
shadow of the kernel g(||z||2).

Even though MS exists, GridShift (GS) uses grid-based
KDE. The definition of grid-based KDE is as follows.

p̂(z) =
1

n

n∑
i=1

KGS(z − xi), (6)

where

KGS(z−xi;h) =

{
c.
(
a− ||z − xi||2

)
, ifM(z, xi;h) ≤ 1

c.a, otherwise,
(7)

M(z, xi;h) = max
{∣∣∣⌊xi,1

h

⌋
−
⌊z1
h

⌋∣∣∣ , . . . , ∣∣∣⌊xi,d

h

⌋
−
⌊zd
h

⌋∣∣∣} .

(8)
Here a and c are positive constants to satisfy kernel function
conditions defined in Eqn 3. Therefore, g(.) can be defined
as follows:

g(||z − xi||2;h) =

{
1, ifM(z, xi;h) ≤ 1

0, otherwise
(9)

2.1. Function Analysis

GS attempts to find local maxima (modes) of the KDE
p̂ =

∑
KGS(z − xi;h). We omit constants and scaling to

define functions ϕ and f instead of KGS and p̂ since they
do not affect optimization:

ϕ(z − xi) =

{
||z − xi||2, ifM(z, xi;h) ≤ 1

a, otherwise

f(z) =

n∑
i=1

ϕ(z − xi).

(10)

A mode of p̂ corresponds to the local minima of f(z). Let’s
examine the properties of the loss function f(z).

Lemma 1. Let us define P(z) = {i : M(z, xi;h) < 1},
then we get

∇f(z) =
∑

i∈P(z)

2(z − xi)

∇2f(z) = 2|P(z)|I.
(11)

If P(z) is not an empty set, then f(z) is strongly convex;
otherwise, it is locally convex.

Proof. Here, the function f(z) is local convex because of
∇2f(z) ≥ 0. Further, if |P(z)| ≠ ∅, then ∇2f(z) ≥ I ,
which means that f(z) is strongly convex locally.

Lemma 2. If a point z∗ is a local minimum for f(z), then
P(z∗) ̸= ∅ and z∗ = 1

|P(z∗)|
∑

i∈P(z∗) xi.

Proof. In order to be stationary, a point z∗ must meet the
following criteria:

∇f(z∗) = 0

⇒z∗ =
1

|P(z∗)|
∑

i∈P(z∗)

xi
(12)

If P(z∗) ̸= ∅, then ∇2f(z∗) > 0; therefore, z∗ is a local
minimum. In the case of P(z∗) ̸= ∅, f(z∗) = n.a (a global
maximum).



Definition 1. If two points y and z lie in the same grid cell,
i.e.
⌊
y
h

⌋
=
⌊
z
h

⌋
, then

y∗ = z∗ =
1

|P(z∗)|
∑

i∈P(z∗)

xi. (13)

Therefore, all the points within a grid cell have the same
local minima.

Due to the same P(.) value for all grid cell points, these
points have the same local minima. This property of KDE
KGS motivates us to develop a new framework, GridShift
(GS), faster than the original MS. In GS, we called the local
minima of a grid cell the centroid. Within each iteration,
centroids (local minima) are updated. Utilizing the cen-
troids of the previous iteration, we update these centroids.

2.2. Convergence Guarantee

Let us define a mapping g(t) : X ← C(t) for any dataset
X(= {x1, x2, . . . , xn}) ∈ Rd, such that each data point
xi ∈ X is assigned to one of the k(t) active grid cells (clus-
ters) c(t)i ∈ C(t). Therefore,

C(t) = {c(t)1 , c
(t)
2 , . . . , c

(t)

k(t)}, and

c
(t)
i ∩ c

(t)
j = ϕ, ∀i, j ∈ {1, 2, . . . , k(t)}, i ̸= j.

(14)

Here, each active cell c(t)i has a set of 1-neighboring active
grid cells, P(t)

ci ⊆ C(t).

Corollary 1. The value of f(ri) obtained by GS is strictly
decreasing unless r(t)i = r

(t−1)
i .

Proof. In GS, we update

r
(t)
j =

∑
i∈P(r

(t−1)
j )

m
(t−1)
i r

(t−1)
i∑

i∈P(r
(t−1)
j )

m
(t−1)
i

, (15)

where mi represents number of data points resident in ith
grid cell. At a particular point z̃, define f(z|z̃) using fol-
lowing equation.

f(z|z̃) =
∑

i∈P(z̃)

mi∥z−ri∥2+

n−
∑

i∈P(z̃)

mi

 a. (16)

Then,

f(r
(t−1)
j )− f(r

(t)
j )

≥ f(r
(t−1)
j |r(t−1)

j )− f(r
(t)
j |r

(t−1)
j )

=
∑

i∈P(r
(t−1)
j )

mi∥r(t−1)
j − r

(t−1)
i ∥2 −

∑
i∈P(r

(t−1)
j )

mi∥r(t)j − r
(t−1)
i ∥2

=
∑

i∈P(r
(t−1)
j )

mi

(
∥r(t−1)

j − r
(t−1)
i ∥2 − ∥r(t)j − r

(t−1)
i ∥2

)

=

 ∑
i∈P

(
r
(t−1)
j

)mi

 ∥r(t−1)
j − r

(t)
j ∥

2 > 0

(17)

Therefore, f(r(t−1)
j ) > f(r

(t)
j ), unless f(r(t−1)

j ) = f(r
(t)
j )

for r(t)j = r
(t−1)
j .

Theorem 1. For any given dataset X ∈ Rd, the
{C(t)}t=1,2,... estimated by successive proposed grid cells
shifts attains convergence, i.e. C(i) == C(i++), where i is
a finite number.

Proof. From corollary 1, since the value of f(r) is mono-
tonically non-increasing, GS attains convergence to the lo-
cal minima of function defined in Eqn. (10). As we know
that Set C contains the centroid of active grid cells (local
minima). Therefore, sequence {C(t)}t=1,2,... attains con-
vergence.

From Eqn. (17), we can have

f(r
(t−1)
j )− f(r

(t)
j ) ≥ ∥r(t−1)

j − r
(t)
j ∥

2, (18)

After summing both sides for t = 1, . . . , i, we get

f(r
(0)
j )− f(r

(i)
j ) ≥

i∑
t=1

∥r(t−1)
j − r

(t)
j ∥

2. (19)

As we know, the right-hand side of the above equation is
positive unless convergence is attained. if we calculate the
maximum value of λ > 0 such that

∥r(t−1)
j − r

(t)
j ∥ ≥ λ > 0, ∀t = 1, . . . , i, (20)

then

i ≤
f(r

(0)
j )− f(r

(i)
j )

λ
(21)

which is a finite number.

Theorem 2. For any X , there exists T ∈ N such that
Q(t)

ci = c
(t)
i , ∀i ∈ {1, 2, . . . , k(t)} for all t ≥ T .



Proof. As we know, at convergence, we have

r
(t+1)
j =

∑
i∈P(r

(t)
j )

m
(t)
i r

(t)
i∑

i∈P(r
(t)
j )

m
(t)
i

= r
(t)
j , (22)

that implies P(r(t)j ) = j, i.e. Q(t)
ci = c

(t)
i .

The above two theorems confirm that GS attains con-
vergence after a finite number of iterations when the active
grid cells do not have any other active members in their 1-
neighborhood to update their attributes further.

2.3. Convergence Rate

In this subsection, we analyze the behavior of GS on
mode seeking of a dataset sampled from a Gaussian dis-
tribution. We will prove that the number of active grid cells
will form a non-increasing sequence, and centroids of these
active grid cells will shrink towards the mean of the distri-
bution with at least a cubic convergence rate.

Let ϕ(x;µ,Σ) denotes a Gaussian probability den-
sity function, where µ and Σ are the mean and disper-
sion matrix of the density function, respectively. To re-
move the dependency on the random process, we con-
sider infinite samples generated from density q(x) =
ϕ(x; 0, diag(s21, s

2
2, . . . , s

2
d)).

Theorem 3. For dataset X = {x1, x2, . . . , xn}
where xi ∼ N (0, diag(s21, . . . , s

2
d)), let centroids

{c(t+1)
i }k(t+1)

i=1 ∼
∫
yp(t)(y|c)dy, where p(t)() repre-

sents the distribution of {c(t+1)
i }k(t+1)

i=1 and p(t)(y|z) =

k(z − y)q(t)(y)/p(t)(z). Then (i) {c(t+1)
i }k(t+1)

i=1 ∼

N
(
0, diag

((
s
(t+1)
1

)2
, . . . ,

(
s
(t+1)
d

)2))
, with

s
(t+1)
j =

(
1 + 2.25h2

s2j

)−1

s
(t)
j and (ii) k(t+1) =∏d

j=1

(⌊
6s

(t+1)
j

h

⌋
+ 1

)
, where {k(t)}∞t=1 is non-

decreasing sequence that converges to 1.

Proof. To estimate the distribution of {c(t+1)
i }k(t+1)

i=1 , we
have

p(1)(y|c(0)) ∝ exp

−1

2

∥∥∥y − c(0)/(2.25h2)
/(2.25h2)+1/(s(0))2

∥∥∥2
1

1/(2.25h2)+1/(s(0))2

 .

(23)
As we know,

c(1) = E(y|x(0)) =

(
c
(0)
1 (s

(0)
1 )2

(s
(0)
1 )2 + 2.25h2

, . . . ,
c
(0)
d (s

(0)
d )2

(s
(0)
d )2 + 2.25h2

)
.

(24)

Therefore, c(1) is also a Gaussian distribution with mean
zero and standard deviation s(1) = (s(0))3

(s(0))2+2.25h2 , which
implies

s
(t+1)
j =

(s
(t)
j )3

(s
(t)
j )2 + 2.25h2

=

(
1 + 2.25

h2

(s
(t)
j )2

)−1

s
(t)
j

(25)
Thus, standard deviation is decreasing with increase of iter-
ation and become zero at convergence. We can estimate the
number of active grid cells according to standard deviation
of this distribution as follows.

k(t+1) =

d∏
j=1

(⌊
6s

(t+1)
j

h

⌋
+ 1

)
. (26)

We see that k(t) is a non-decreasing sequence and converges
to 1 when s

(t+1)
j becomes 0.

3. Dataset

S.N Dataset n d k

1. Phone Gyroscope 13932632 3 7
2. Phone Accelerometer 13062475 3 7
3. Watch Accelerometer 3540962 3 7
4. Watch Gyroscope 3205431 3 7
5. Still 949983 3 6
6. Skin 245057 3 2
7. Wall Robot 5456 4 4
8. Sleep Data 1024 2 2
9. Balance Scale 625 4 3

10. User Knoweldge 403 5 5
11. Vinnie 380 2 2
12. PRNN 250 2 2
13. Iris 150 4 3
14. Transplant 131 3 2

Table 1. Brief summary of datasets used in experiment. n: number
of data points, d: number of features, and k: number of clusters.
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